d2l解码编码器与seq2seq

seq2seq难死了,卡了好久,好不容易有些头绪了。。。

目录

1.编码器与解码器

1.1原理

1.2实现

2.seq2seq

2.1构造编码器

2.2构造解码器

repeat与cat探索

总结nn.rnn\GRU\LSTM输入输出

看一下解码器的输出

2.3损失计算

2.4训练

2.5预测

2.6预测评估BLEU

2.7预测结果


1.编码器与解码器

1.1原理

编码器(encoder ):它接受⼀个⻓度可变的序列作为输⼊,并将其转换为具有固定形状的编码状态。第⼆个组件是解码器(decoder ):它将固定形状的编码状态映射到⻓度可变的序列。

1.2实现

#@save
class EncoderDecoder(nn.Module):
    """编码器-解码器架构的基类"""
    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder
        
    def forward(self, enc_X, dec_X, *args):
        enc_outputs = self.encoder(enc_X, *args)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)

其中,dec_X为解码器输入,dec_state为解码器的初始状态,enc_outputs为编码器输出(p269),传入decoder中的init_state函数。

2.seq2seq

2.1构造编码器

Embedding当作每个词嵌入one-hot。onehot是最简单的一种embedding

#@save
class Seq2SeqEncoder(d2l.Encoder):
    """⽤于序列到序列学习的循环神经⽹络编码器"""
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
        dropout=0, **kwargs):
        super(Seq2SeqEncoder, self).__init__(**kwargs)
        # 嵌⼊层
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers,
                            dropout=dropout)
        
    def forward(self, X, *args):
        # 输出'X'的形状:(batch_size,num_steps,embed_size)
        X = self.embedding(X)
        # 在循环神经⽹络模型中,第⼀个轴对应于时间步
        X = X.permute(1, 0, 2)
        # 如果未提及状态,则默认为0
        output, state = self.rnn(X)
        # output的形状:(num_steps,batch_size,num_hiddens)
        # state的形状:(num_layers,batch_size,num_hiddens)
        return output, state

  编码器最终的output输出为(T,bs,hiddens),state的输出为(n_layers,bs,hiddens)
  如果是Lstm的话,state是一个包含两个tensor的tuple,为Ht与Ct

  下面这个例子bs=4,T=7,生成最终的output与state符合上述结论

encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,
                        num_layers=2)
encoder.eval()
X = torch.zeros((4, 7), dtype=torch.long)
output, state = encoder(X)
output.shape, state.shape

'''
(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))
'''

2.2构造解码器

  encoder(X)得到的有output与state,这里init_state只拿[1],即只拿state。
  再在forward中,拿到state[-1]最后一个时刻的最后一层的hidden,使用repeat广播到与X相同的维数(repeat探索下文)
  目标tgt的输入X与src中的最后一层最后一个时刻广播后的state进行concat,一起送到目标层中的gru中进行输出,得到(T,bs,hidden),再通过dense的Linear层并转换维数permute,得到最终的输出(bs,T,len(v)).
  state形状见(V,为(n_layer,bs,h),表示最后一个时刻每个layer的Ht

  定义GRU时,假设Encoder与Decoder中的hiddens是一致的,作用是将Encoder的state与decoder的input进行concat起来,使得满足训练图:每个input都与最后的state进行cat。

   对于这个最后的state,还要进行补充说明,state[-1]是最后一个时刻的Tt中的最后一层layer的hidden,其形状为(bs,h),repeat后变为(T,bs,emb),这是把最后一刻的最后一层取代最后一刻的state,因为感觉state还不够靠后,所以将最后一刻的最后一层复制了T次。cat后变为(T,bs,emb+h),作为解码器的输入。

  tgt中的每个input词元与state[-1]都cat了起来,作为dec_input。在传入enc的state(n_layer,bs,h)作为解码器初始的state。

class Seq2SeqDecoder(d2l.Decoder):
    """⽤于序列到序列学习的循环神经⽹络解码器"""
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                dropout=0, **kwargs):
        super(Seq2SeqDecoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,
                            dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)
        
    def init_state(self, enc_outputs, *args):
        return enc_outputs[1]
    
    def forward(self, X, state):
        # 输出'X'的形状:(batch_size,num_steps,embed_size)
        X = self.embedding(X).permute(1, 0, 2)
        # ⼴播context,使其具有与X相同的num_steps
        context = state[-1].repeat(X.shape[0], 1, 1)
        X_and_context = torch.cat((X, context), 2)
        output, state = self.rnn(X_and_context, state)
        output = self.dense(output).permute(1, 0, 2)
        # output的形状:(batch_size,num_steps,vocab_size)
        # state的形状:(num_layers,batch_size,num_hiddens)
        return output, state

这里面forward里面的state就是enc_outpus[1],可以观察解码器与编码器类。

repeat与cat探索

改成(T,1),结果返回的是(T×bs,h);改成(T,1,1,1),返回的是(T,1,bs,h);改成(1,T,1),返回的是(1,bs×T,h)。也就是说,原tensor为二维的(bs,h),repeat的最后两个数表示对这两个维度的操作,如果最后两个是(1,1),则原tensor保持不变,如果最后两个维度数字发生了变化,则表示原对应维度的数字×变化数字。如上述的(bs×T,h)或(bs, T×h)

 下面的cat操作,注意只有除了指定的拼接维度之外,其他维度必须一致才能运行!在这里,X表示tgt的input,形状为(T,bs,emb),广播后的state为(T,bs,h),拼接后为(T,bs,emb+h),对应decoder里面的GRU输入维度为dmb+h

总结nn.rnn\GRU\LSTM输入输出

  总结一下简介实现rnn的输入输出,输入为X(T,bs,emb);net = nn.rnn(input,h)改为nn.GRU\LSTM都一样,都为(input,h)。在数据处理后,input可以为emb,或者是上述的emb+h。通过nn的net处理后得到的都是(T,bs,h)。

看一下解码器的输出

对应output就是(bs,T,len(v))。state与之前一样的(n_layer,bs,h)

decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8, num_hiddens=16,
                        num_layers=2)
decoder.eval()
state = decoder.init_state(encoder(X))
output, state = decoder(X, state)
output.shape, state.shape

'''
(torch.Size([4, 7, 10]), torch.Size([2, 4, 16]))
'''

2.3损失计算

  在计算损失时,应该将填充词源pad(对应的idx为1)去除,通过零化屏蔽不相关的项,以便后续任何不相关预测的计算都是与0乘积。

#@save
def sequence_mask(X, valid_len, value=0):
    """在序列中屏蔽不相关的项"""
    maxlen = X.size(1)
    mask = torch.arange((maxlen), dtype=torch.float32,
                        device=X.device)[None, :] < valid_len[:, None]
    X[~mask] = value
    return X

举个例子:

X = torch.tensor([[1, 2, 3], [4, 5, 6]])
sequence_mask(X, torch.tensor([1, 2]))

'''
tensor([[1, 0, 0],
        [4, 5, 0]])
'''

  通过扩展softmax交叉熵损失loss来屏蔽不相关的预测

  每个T都生成一个vocab的预测,但是src中的pad词元没意义,所以要零化
  pred是decoder的最终输出,形状为(bs,T,len(v))
  weights前valid_len个元素为1,后面的为0.是为了过滤损失中填充词元产生的不相关预测
  reduction='none'表示不进行mean操作
  nn里面的交叉熵需要将预测的维度放在中间,所以要permute为(bs,len(v),T)

#@save
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
    """带遮蔽的softmax交叉熵损失函数"""
    # pred的形状:(batch_size,num_steps,vocab_size)
    # label的形状:(batch_size,num_steps)
    # valid_len的形状:(batch_size,)
    def forward(self, pred, label, valid_len):
        weights = torch.ones_like(label)
        weights = sequence_mask(weights, valid_len)
        self.reduction='none'
        unweighted_loss = super().forward(pred.permute(0, 2, 1), label)
        weighted_loss = (unweighted_loss * weights).mean(dim=1)
        return weighted_loss

举个例子,使用3个相同的序列进行代码健全性的检查,指定序列长度为4,2,0.第一个序列的损失应为第二个的2倍。

loss = MaskedSoftmaxCELoss()
loss(torch.ones(3, 4, 10), torch.ones((3, 4), dtype=torch.long),
    torch.tensor([4, 2, 0]))

'''
tensor([2.3026, 1.1513, 0.0000])
'''

2.4训练

大头都在Decoder里面讲了。

  加了一个bos,将每个句子最后一个拿掉,与bos进行cat替换成bos。
  实现的是p267页的图


  Y_hat, _ = net(X, dec_input, X_valid_len)中,X对应的是enc_X;dec_input对应的是dec_X。解码器的输入。再详细看一下解码器decoder的操作!!
  bos的尺寸为(bs,1),与前面的cat结论一致

#@save
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):
    """训练序列到序列模型"""
    def xavier_init_weights(m):
        if type(m) == nn.Linear:
            nn.init.xavier_uniform_(m.weight)
        if type(m) == nn.GRU:
            for param in m._flat_weights_names:
                if "weight" in param:
                    nn.init.xavier_uniform_(m._parameters[param])
        
    net.apply(xavier_init_weights)
    net.to(device)
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    loss = MaskedSoftmaxCELoss()
    net.train()
    animator = d2l.Animator(xlabel='epoch', ylabel='loss',
                            xlim=[10, num_epochs])
    for epoch in range(num_epochs):
        timer = d2l.Timer()
        metric = d2l.Accumulator(2) # 训练损失总和,词元数量
        for batch in data_iter:
            optimizer.zero_grad()
            X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch]
            bos = torch.tensor([tgt_vocab['<bos>']] * Y.shape[0],
                                device=device).reshape(-1, 1)
            dec_input = torch.cat([bos, Y[:, :-1]], 1) # 强制教学
            Y_hat, _ = net(X, dec_input, X_valid_len)
            l = loss(Y_hat, Y, Y_valid_len)
            l.sum().backward() # 损失函数的标量进⾏“反向传播”
            d2l.grad_clipping(net, 1)
            num_tokens = Y_valid_len.sum()
            optimizer.step()
            with torch.no_grad():
                metric.add(l.sum(), num_tokens)
        if (epoch + 1) % 10 == 0:
            animator.add(epoch + 1, (metric[0] / metric[1],))
    print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
        f'tokens/sec on {str(device)}')

  dec_input注意cat中,bos在前,所以是将每个句子的开头放上bos,与书上的图片对应一致

 

   命令行

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 300, d2l.try_gpu()

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers,
                        dropout)
decoder = Seq2SeqDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers,
                        dropout)
net = d2l.EncoderDecoder(encoder, decoder)
train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

2.5预测

#@save
def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps,
                    device, save_attention_weights=False):
    """序列到序列模型的预测"""
    # 在预测时将net设置为评估模式
    net.eval()
    src_tokens = src_vocab[src_sentence.lower().split(' ')] + [
                            src_vocab['<eos>']]
    enc_valid_len = torch.tensor([len(src_tokens)], device=device)
    src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
    # 添加批量轴
    enc_X = torch.unsqueeze(
            torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0)
    enc_outputs = net.encoder(enc_X, enc_valid_len)
    dec_state = net.decoder.init_state(enc_outputs, enc_valid_len)
    # 添加批量轴
    dec_X = torch.unsqueeze(torch.tensor(
        [tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0)
    output_seq, attention_weight_seq = [], []
    for _ in range(num_steps):
        Y, dec_state = net.decoder(dec_X, dec_state)
        # 我们使⽤具有预测最⾼可能性的词元,作为解码器在下⼀时间步的输⼊
        dec_X = Y.argmax(dim=2)
        pred = dec_X.squeeze(dim=0).type(torch.int32).item()
        # 保存注意⼒权重(稍后讨论)
        if save_attention_weights:
            attention_weight_seq.append(net.decoder.attention_weights)
        # ⼀旦序列结束词元被预测,输出序列的⽣成就完成了
        if pred == tgt_vocab['<eos>']:
            break
        output_seq.append(pred)
    return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq

  预测阶段:dec_X的尺寸为(1,1).即(bs,T),但是经过embedding后,会自动生成(bs,T,emb),符合decoder后续的操作。

  unsqueeze是指定增加维度,squeeze是指定降维。

 预测阶段效果图:

2.6预测评估BLEU

  实现公式:

 当预测与标签完全相同时,BLEU=1;越小则预测的越差。

 其中,前面的min是过短预测的惩罚项,越短则最后的值越小,说明越差

 后面的P^(1/2^n)是过长预测的乘法(奖励)项,越长则n越大,则该项越大(因为p是[0,1]之间的数)。

def bleu(pred_seq, label_seq, k): #@save
    """计算BLEU"""
    pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ')
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[' '.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[' '.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[' '.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

2.7预测结果

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
    translation, attention_weight_seq = predict_seq2seq(
        net, eng, src_vocab, tgt_vocab, num_steps, device)
    print(f'{eng} => {translation}, bleu {bleu(translation, fra, k=2):.3f}')

'''
go . => va !, bleu 1.000
i lost . => j'ai perdu perdu ., bleu 0.783
he's calm . => il court bien . ?, bleu 0.000
i'm home . => je suis malade bien bien bien ., bleu 0.418
'''

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
seq2seq模型中,编码器将输入序列转换为固定长度的向量表示,解码器则将该向量作为输入并生成输出序列。 以下是用代码实现seq2seq结构中的编码器解码器的基本步骤: 编码器: 1. 定义编码器的输入和输出 2. 定义编码器的RNN单元(如LSTM或GRU) 3. 通过for循环遍历输入序列,使用RNN单元进行前向传播,得到每个时间步的输出 4. 返回最终的隐状态作为编码器的输出 解码器: 1. 定义解码器的输入和输出 2. 定义解码器的RNN单元(如LSTM或GRU) 3. 初始化解码器的隐状态,通常使用编码器输出的隐状态进行初始化 4. 通过for循环遍历输出序列,使用RNN单元进行前向传播,得到每个时间步的输出 5. 返回最终的输出序列 以下是一个简单的Python代码示例,展示了如何实现一个基本的seq2seq模型: ```python import tensorflow as tf # 定义编码器 def encoder(input_seq, hidden_size, num_layers): with tf.variable_scope('encoder'): # 定义编码器的RNN单元 cells = [tf.nn.rnn_cell.LSTMCell(hidden_size) for _ in range(num_layers)] rnn_cell = tf.nn.rnn_cell.MultiRNNCell(cells) # 通过for循环遍历输入序列,使用RNN单元进行前向传播,得到每个时间步的输出 outputs, final_state = tf.nn.dynamic_rnn(rnn_cell, input_seq, dtype=tf.float32) # 返回最终的隐状态作为编码器的输出 return final_state # 定义解码器 def decoder(input_seq, hidden_size, num_layers, encoder_state): with tf.variable_scope('decoder'): # 定义解码器的RNN单元 cells = [tf.nn.rnn_cell.LSTMCell(hidden_size) for _ in range(num_layers)] rnn_cell = tf.nn.rnn_cell.MultiRNNCell(cells) # 初始化解码器的隐状态,通常使用编码器输出的隐状态进行初始化 init_state = encoder_state # 通过for循环遍历输出序列,使用RNN单元进行前向传播,得到每个时间步的输出 outputs, final_state = tf.nn.dynamic_rnn(rnn_cell, input_seq, initial_state=init_state, dtype=tf.float32) # 返回最终的输出序列 return outputs ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值