Python实现VRP常见求解算法——离散量子行为粒子群算法(DQPSO)

该博客详细介绍了如何使用Python实现离散量子行为粒子群优化算法(DQPSO)解决车辆路径规划问题(CVRP)。内容涵盖算法适用场景、求解效果、问题分析、数据格式、分步实现过程,包括数据读取、初始种群生成、位置更新、目标值计算等关键步骤,并提供了完整的代码参考。此外,还展示了算法的收敛曲线和车辆路径示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于python语言,实现经典离散量子行为粒子群算法(DQPSO)对车辆路径规划问题(CVRP)进行求解。

优质资源

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量不小于需求节点最大需求
  • 单一车辆基地

2. 求解效果

(1)收敛曲线
在这里插入图片描述

(2)车辆路径
在这里插入图片描述

3. 问题分析

CVRP问题的解为一组满足需求节点需求的多个车辆的路径集合。假设某物理网络中共有10个顾客节点,编号为1~10,一个车辆基地,编号为0,在满足车辆容量约束与顾客节点需求约束的条件下,此问题的一个可行解可表示为:[0-1-2-0,0-3-4-5-0,0-6-7-8-0,0-9-10-0],即需要4个车辆来提供服务,车辆的行驶路线分别为0-1-2-0,0-3-4-5-0,0-6-7-8-0,0-9-10-0。由于车辆的容量固定,基地固定,因此可以将上述问题的解先表示为[1-2-3-4-5-6-7-8-9-10]的有序序列,然后根据车辆的容量约束,对序列进行切割得到若干车辆的行驶路线。因此可以将CVRP问题转换为TSP问题进行求解,得到TSP问题的优化解后再考虑车辆容量约束进行路径切割,得到CVRP问题的解。这样的处理方式可能会影响CVRP问题解的质量,但简化了问题的求解难度。

4. 数据格式

以xlsx文件储存网络数据,其中第一行为标题栏,第二行存放车辆基地数据。在程序中车辆基地seq_no编号为-1,需求节点seq_id从0开始编号。可参考github主页相关文件。

5. 分步实现

(1)数据结构
为便于数据处理,定义Sol()类,Node()类,Model()类,其属性如下表:

  • Sol()类,表示一个可行解
属性描述
nodes_seq需求节点seq_no有序排列集合,对应TSP的解
obj优化目标值
routes车辆路径集合,对应CVRP的解
  • Node()类,表示一个网络节点
属性描述
id物理节点id,可选
name物理节点名称,可选
seq_no物理节点映射id,基地节点为-1,需求节点从0编号
x_coord物理节点x坐标
y_coord物理节点y坐标
demand物理节点需求
  • Model()类,存储算法参数
属性描述
sol_list可行解集合,值类型为Sol()
best_sol全局最优解,值类型为Sol()
node_list物理节点集合,值类型为Node()
node_seq_no_list物理节点映射id集合
depot车辆基地,值类型为Node()
number_of_nodes需求节点数量
opt_type优化目标类型,0:最小车辆数,1:最小行驶距离
vehicle_cap车辆容量
popsize种群规模
pl个体历史最优位置
pg群体历史最优位置
mg群体历史平均最优位置
alpha扩张-收缩因子
(2)文件读取
def readXlsxFile(filepath,model):
    # It is recommended that the vehicle depot data be placed in the first line of xlsx file
    node_seq_no = -1 #the depot node seq_no is -1,and demand node seq_no is 0,1,2,...
    df = pd.read_excel(filepath)
    for i in range(df.shape[0]):
        node=Node()
        node.id=node_seq_no
        node.seq_no=node_seq_no
        node.x_coord= df['x_coord'][i]
        node.y_coord= df['y_coord'][i]
        node.demand=df['demand'][i]
        if df['demand'][i] == 0:
            model.depot=node
        else:
            model.node_list.append(node)
            model.node_seq_no_list.append(node_seq_no)
        try:
            node.name=df['name'][i]
        except:
            pass
        try:
            node.id=df['id'][i]
        except:
            pass
        node_seq_no=node_seq_no+1
    model.number_of_nodes=len(model.node_list)

(3)初始种群

def genInitialSol(model):
    node_seq=copy.deepcopy(model.node_seq_no_list)
    best_sol=Sol()
    best_sol.obj=float('inf')
    mg=[0]*model.number_of_nodes
    for i in range(model.popsize):
        seed = int(random.randint(0, 10))
        random.seed(seed)
        random.shuffle(node_seq)
        sol=Sol()
        sol.nodes_seq= copy.deepcopy(node_seq)
        sol.obj,sol.routes=calObj(sol.nodes_seq,model)
        model.sol_list.append(sol)
        #init the optimal position of each particle
        model.pl.append(sol.nodes_seq)
        #init the average optimal position of particle population
        mg=[mg[k]+node_seq[k]/model.popsize for k in range(model.number_of_nodes)]
        #init the optimal position of particle population
        if sol.obj<best_sol.obj:
            best_sol=copy.deepcopy(sol)
    model.best_sol=best_sol
    model.pg=best_sol.nodes_seq
    model.mg=mg

(4)位置更新
首先将粒子看做连续空间中的点进行位置更新,然后对位置分量取整离散化。在具体操作时需要注意两个问题:1)粒子位置分量的值为应整数,不能超出需求节点seq_no范围,即[0, number_of_nodes-1];2)粒子位置分量的值具有唯一性,且刚好覆盖需求节点的seq_no值。满足以上条件时,更新后的粒子才是TSP、CVRP的可行解。这里采用与DPSO算法相同的处理策略。

def adjustRoutes(nodes_seq,model):
    all_node_list=copy.deepcopy(model.node_seq_no_list)
    repeat_node=[]
    for id,node_no in enumerate(nodes_seq):
        if node_no in all_node_list:
            all_node_list.remove(node_no)
        else:
            repeat_node.append(id)
    for i in range(len(repeat_node)):
        nodes_seq[repeat_node[i]]=all_node_list[i]
    return nodes_seq

def updatePosition(model):
    alpha=model.alpha
    pg=model.pg
    mg=model.mg
    mg_=[0]*model.number_of_nodes  #update optimal position of each particle for next iteration
    for id, sol in enumerate(model.sol_list):
        x=sol.nodes_seq
        pl = model.pl[id]
        pi=[]
        for k in range(model.number_of_nodes): #calculate pi(ep+1)
            phi = random.random()
            pi.append(phi*pl[k]+(1-phi)*pg[k])
        #calculate x(ep+1)
        if random.random()<=0.5:
            X=[min(int(pi[k]+alpha*abs(mg[k]-x[k])*math.log(1/random.random())),model.number_of_nodes-1)
               for k in range(model.number_of_nodes)]
        else:
            X=[min(int(pi[k]-alpha*abs(mg[k]-x[k])*math.log(1/random.random())),model.number_of_nodes-1)
               for k in range(model.number_of_nodes)]

        X= adjustRoutes(X, model)
        X_obj, X_routes = calObj(X,model)
        # update pl
        if X_obj < sol.obj:
            model.pl[id] = copy.deepcopy(X)
        # update pg,best_sol
        if X_obj < model.best_sol.obj:
            model.best_sol.obj = copy.deepcopy(X_obj)
            model.best_sol.nodes_seq = copy.deepcopy(X)
            model.best_sol.routes = copy.deepcopy(X_routes)
            model.pg = copy.deepcopy(X)
        mg_ = [mg_[k] + model.pl[id][k] / model.popsize for k in range(model.number_of_nodes)]
        model.sol_list[id].nodes_seq = copy.deepcopy(X)
        model.sol_list[id].obj = copy.deepcopy(X_obj)
        model.sol_list[id].routes = copy.deepcopy(X_routes)
    # update mg
    model.mg=copy.deepcopy(mg_)

(5)目标值计算
目标值计算依赖 " splitRoutes " 函数对TSP可行解分割得到车辆行驶路线和所需车辆数, " calDistance " 函数计算行驶距离。

def splitRoutes(nodes_seq,model):
    num_vehicle = 0
    vehicle_routes = []
    route = []
    remained_cap = model.vehicle_cap
    for node_no in nodes_seq:
        if remained_cap - model.node_list[node_no].demand >= 0:
            route.append(node_no)
            remained_cap = remained_cap - model.node_list[node_no].demand
        else:
            vehicle_routes.append(route)
            route = [node_no]
            num_vehicle = num_vehicle + 1
            remained_cap =model.vehicle_cap - model.node_list[node_no].demand
    vehicle_routes.append(route)
    return num_vehicle,vehicle_routes
def calDistance(route,model):
    distance=0
    depot=model.depot
    for i in range(len(route)-1):
        from_node=model.node_list[route[i]]
        to_node=model.node_list[route[i+1]]
        distance+=math.sqrt((from_node.x_coord-to_node.x_coord)**2+(from_node.y_coord-to_node.y_coord)**2)
    first_node=model.node_list[route[0]]
    last_node=model.node_list[route[-1]]
    distance+=math.sqrt((depot.x_coord-first_node.x_coord)**2+(depot.y_coord-first_node.y_coord)**2)
    distance+=math.sqrt((depot.x_coord-last_node.x_coord)**2+(depot.y_coord - last_node.y_coord)**2)
    return distance
def calObj(nodes_seq,model):
    num_vehicle, vehicle_routes = splitRoutes(nodes_seq, model)
    if model.opt_type==0:
        return num_vehicle,vehicle_routes
    else:
        distance=0
        for route in vehicle_routes:
            distance+=calDistance(route,model)
        return distance,vehicle_routes

(6)绘制收敛曲线

def plotObj(obj_list):
    plt.rcParams['font.sans-serif'] = ['SimHei'] #show chinese
    plt.rcParams['axes.unicode_minus'] = False  # Show minus sign
    plt.plot(np.arange(1,len(obj_list)+1),obj_list)
    plt.xlabel('Iterations')
    plt.ylabel('Obj Value')
    plt.grid()
    plt.xlim(1,len(obj_list)+1)
    plt.show()

(7)输出结果

def outPut(model):
    work=xlsxwriter.Workbook('result.xlsx')
    worksheet=work.add_worksheet()
    worksheet.write(0,0,'opt_type')
    worksheet.write(1,0,'obj')
    if model.opt_type==0:
        worksheet.write(0,1,'number of vehicles')
    else:
        worksheet.write(0, 1, 'drive distance of vehicles')
    worksheet.write(1,1,model.best_sol.obj)
    for row,route in enumerate(model.best_sol.routes):
        worksheet.write(row+2,0,'v'+str(row+1))
        r=[str(i)for i in route]
        worksheet.write(row+2,1, '-'.join(r))
    work.close()

(8)主函数

def run(filepath,epochs,popsize,alpha,v_cap,opt_type):
    """
    :param filepath: Xlsx file path
    :type str
    :param epochs:Iterations
    :type int
    :param popsize:Population size
    :type int
    :param alpha:Innovation(Control) parameters,(0,1]
    :type float,
    :param v_cap:Vehicle capacity
    :type float
    :param opt_type:Optimization type:0:Minimize the number of vehicles,1:Minimize travel distance
    :type int,0 or 1
    :return:
    """
    model=Model()
    model.vehicle_cap=v_cap
    model.opt_type=opt_type
    model.alpha=alpha
    model.popsize=popsize
    readXlsxFile(filepath,model)
    history_best_obj=[]
    genInitialSol(model)
    history_best_obj.append(model.best_sol.obj)
    for ep in range(epochs):
        updatePosition(model)
        history_best_obj.append(model.best_sol.obj)
        print("%s/%s: best obj: %s"%(ep,epochs,model.best_sol.obj))
    plotObj(history_best_obj)
    outPut(model)

6. 完整代码

代码和数据文件可获取【私信】:

https://download.csdn.net/download/python_n/37357242

参考

  1. 孙俊.量子行为粒子群优化算法研究[D].江苏:江南大学,2009. DOI:10.7666/d.y1585071.
  2. 郑伟博.粒子群优化算法的改进及其应用研究[D].山东:青岛大学,2016.
  3. https://blog.csdn.net/Luqiang_Shi/article/details/84757727
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better.C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值