基于python语言,实现经典离散量子行为粒子群算法(DQPSO)对车辆路径规划问题(CVRP)进行求解。
优质资源
- python实现6种智能算法求解CVRP问题
- python实现7种智能算法求解MDVRP问题
- python实现7种智能算法求解MDVRPTW问题
- Python版MDHFVRPTW问题智能求解算法代码【TS算法】
- Python版MDHFVRPTW问题智能求解算法代码【SA算法】
- Python版MDHFVRPTW问题智能求解算法代码【GA算法】
- Python版MDHFVRPTW问题智能求解算法代码【DPSO算法】
- Python版MDHFVRPTW问题智能求解算法代码【DE算法】
- Python版MDHFVRPTW问题智能求解算法代码【ACO算法】
- Python版HVRP问题智能求解算法代码【GA算法】
- Python版HVRP问题智能求解算法代码【DPSO算法】
1. 适用场景
- 求解CVRP
- 车辆类型单一
- 车辆容量不小于需求节点最大需求
- 单一车辆基地
2. 求解效果
(1)收敛曲线
(2)车辆路径
3. 问题分析
CVRP问题的解为一组满足需求节点需求的多个车辆的路径集合。假设某物理网络中共有10个顾客节点,编号为1~10,一个车辆基地,编号为0,在满足车辆容量约束与顾客节点需求约束的条件下,此问题的一个可行解可表示为:[0-1-2-0,0-3-4-5-0,0-6-7-8-0,0-9-10-0],即需要4个车辆来提供服务,车辆的行驶路线分别为0-1-2-0,0-3-4-5-0,0-6-7-8-0,0-9-10-0。由于车辆的容量固定,基地固定,因此可以将上述问题的解先表示为[1-2-3-4-5-6-7-8-9-10]的有序序列,然后根据车辆的容量约束,对序列进行切割得到若干车辆的行驶路线。因此可以将CVRP问题转换为TSP问题进行求解,得到TSP问题的优化解后再考虑车辆容量约束进行路径切割,得到CVRP问题的解。这样的处理方式可能会影响CVRP问题解的质量,但简化了问题的求解难度。
4. 数据格式
以xlsx文件储存网络数据,其中第一行为标题栏,第二行存放车辆基地数据。在程序中车辆基地seq_no编号为-1,需求节点seq_id从0开始编号。可参考github主页相关文件。
5. 分步实现
(1)数据结构
为便于数据处理,定义Sol()类,Node()类,Model()类,其属性如下表:
- Sol()类,表示一个可行解
属性 | 描述 |
---|---|
nodes_seq | 需求节点seq_no有序排列集合,对应TSP的解 |
obj | 优化目标值 |
routes | 车辆路径集合,对应CVRP的解 |
- Node()类,表示一个网络节点
属性 | 描述 |
---|---|
id | 物理节点id,可选 |
name | 物理节点名称,可选 |
seq_no | 物理节点映射id,基地节点为-1,需求节点从0编号 |
x_coord | 物理节点x坐标 |
y_coord | 物理节点y坐标 |
demand | 物理节点需求 |
- Model()类,存储算法参数
属性 | 描述 |
---|---|
sol_list | 可行解集合,值类型为Sol() |
best_sol | 全局最优解,值类型为Sol() |
node_list | 物理节点集合,值类型为Node() |
node_seq_no_list | 物理节点映射id集合 |
depot | 车辆基地,值类型为Node() |
number_of_nodes | 需求节点数量 |
opt_type | 优化目标类型,0:最小车辆数,1:最小行驶距离 |
vehicle_cap | 车辆容量 |
popsize | 种群规模 |
pl | 个体历史最优位置 |
pg | 群体历史最优位置 |
mg | 群体历史平均最优位置 |
alpha | 扩张-收缩因子 |
(2)文件读取 |
def readXlsxFile(filepath,model):
# It is recommended that the vehicle depot data be placed in the first line of xlsx file
node_seq_no = -1 #the depot node seq_no is -1,and demand node seq_no is 0,1,2,...
df = pd.read_excel(filepath)
for i in range(df.shape[0]):
node=Node()
node.id=node_seq_no
node.seq_no=node_seq_no
node.x_coord= df['x_coord'][i]
node.y_coord= df['y_coord'][i]
node.demand=df['demand'][i]
if df['demand'][i] == 0:
model.depot=node
else:
model.node_list.append(node)
model.node_seq_no_list.append(node_seq_no)
try:
node.name=df['name'][i]
except:
pass
try:
node.id=df['id'][i]
except:
pass
node_seq_no=node_seq_no+1
model.number_of_nodes=len(model.node_list)
(3)初始种群
def genInitialSol(model):
node_seq=copy.deepcopy(model.node_seq_no_list)
best_sol=Sol()
best_sol.obj=float('inf')
mg=[0]*model.number_of_nodes
for i in range(model.popsize):
seed = int(random.randint(0, 10))
random.seed(seed)
random.shuffle(node_seq)
sol=Sol()
sol.nodes_seq= copy.deepcopy(node_seq)
sol.obj,sol.routes=calObj(sol.nodes_seq,model)
model.sol_list.append(sol)
#init the optimal position of each particle
model.pl.append(sol.nodes_seq)
#init the average optimal position of particle population
mg=[mg[k]+node_seq[k]/model.popsize for k in range(model.number_of_nodes)]
#init the optimal position of particle population
if sol.obj<best_sol.obj:
best_sol=copy.deepcopy(sol)
model.best_sol=best_sol
model.pg=best_sol.nodes_seq
model.mg=mg
(4)位置更新
首先将粒子看做连续空间中的点进行位置更新,然后对位置分量取整离散化。在具体操作时需要注意两个问题:1)粒子位置分量的值为应整数,不能超出需求节点seq_no范围,即[0, number_of_nodes-1];2)粒子位置分量的值具有唯一性,且刚好覆盖需求节点的seq_no值。满足以上条件时,更新后的粒子才是TSP、CVRP的可行解。这里采用与DPSO算法相同的处理策略。
def adjustRoutes(nodes_seq,model):
all_node_list=copy.deepcopy(model.node_seq_no_list)
repeat_node=[]
for id,node_no in enumerate(nodes_seq):
if node_no in all_node_list:
all_node_list.remove(node_no)
else:
repeat_node.append(id)
for i in range(len(repeat_node)):
nodes_seq[repeat_node[i]]=all_node_list[i]
return nodes_seq
def updatePosition(model):
alpha=model.alpha
pg=model.pg
mg=model.mg
mg_=[0]*model.number_of_nodes #update optimal position of each particle for next iteration
for id, sol in enumerate(model.sol_list):
x=sol.nodes_seq
pl = model.pl[id]
pi=[]
for k in range(model.number_of_nodes): #calculate pi(ep+1)
phi = random.random()
pi.append(phi*pl[k]+(1-phi)*pg[k])
#calculate x(ep+1)
if random.random()<=0.5:
X=[min(int(pi[k]+alpha*abs(mg[k]-x[k])*math.log(1/random.random())),model.number_of_nodes-1)
for k in range(model.number_of_nodes)]
else:
X=[min(int(pi[k]-alpha*abs(mg[k]-x[k])*math.log(1/random.random())),model.number_of_nodes-1)
for k in range(model.number_of_nodes)]
X= adjustRoutes(X, model)
X_obj, X_routes = calObj(X,model)
# update pl
if X_obj < sol.obj:
model.pl[id] = copy.deepcopy(X)
# update pg,best_sol
if X_obj < model.best_sol.obj:
model.best_sol.obj = copy.deepcopy(X_obj)
model.best_sol.nodes_seq = copy.deepcopy(X)
model.best_sol.routes = copy.deepcopy(X_routes)
model.pg = copy.deepcopy(X)
mg_ = [mg_[k] + model.pl[id][k] / model.popsize for k in range(model.number_of_nodes)]
model.sol_list[id].nodes_seq = copy.deepcopy(X)
model.sol_list[id].obj = copy.deepcopy(X_obj)
model.sol_list[id].routes = copy.deepcopy(X_routes)
# update mg
model.mg=copy.deepcopy(mg_)
(5)目标值计算
目标值计算依赖 " splitRoutes " 函数对TSP可行解分割得到车辆行驶路线和所需车辆数, " calDistance " 函数计算行驶距离。
def splitRoutes(nodes_seq,model):
num_vehicle = 0
vehicle_routes = []
route = []
remained_cap = model.vehicle_cap
for node_no in nodes_seq:
if remained_cap - model.node_list[node_no].demand >= 0:
route.append(node_no)
remained_cap = remained_cap - model.node_list[node_no].demand
else:
vehicle_routes.append(route)
route = [node_no]
num_vehicle = num_vehicle + 1
remained_cap =model.vehicle_cap - model.node_list[node_no].demand
vehicle_routes.append(route)
return num_vehicle,vehicle_routes
def calDistance(route,model):
distance=0
depot=model.depot
for i in range(len(route)-1):
from_node=model.node_list[route[i]]
to_node=model.node_list[route[i+1]]
distance+=math.sqrt((from_node.x_coord-to_node.x_coord)**2+(from_node.y_coord-to_node.y_coord)**2)
first_node=model.node_list[route[0]]
last_node=model.node_list[route[-1]]
distance+=math.sqrt((depot.x_coord-first_node.x_coord)**2+(depot.y_coord-first_node.y_coord)**2)
distance+=math.sqrt((depot.x_coord-last_node.x_coord)**2+(depot.y_coord - last_node.y_coord)**2)
return distance
def calObj(nodes_seq,model):
num_vehicle, vehicle_routes = splitRoutes(nodes_seq, model)
if model.opt_type==0:
return num_vehicle,vehicle_routes
else:
distance=0
for route in vehicle_routes:
distance+=calDistance(route,model)
return distance,vehicle_routes
(6)绘制收敛曲线
def plotObj(obj_list):
plt.rcParams['font.sans-serif'] = ['SimHei'] #show chinese
plt.rcParams['axes.unicode_minus'] = False # Show minus sign
plt.plot(np.arange(1,len(obj_list)+1),obj_list)
plt.xlabel('Iterations')
plt.ylabel('Obj Value')
plt.grid()
plt.xlim(1,len(obj_list)+1)
plt.show()
(7)输出结果
def outPut(model):
work=xlsxwriter.Workbook('result.xlsx')
worksheet=work.add_worksheet()
worksheet.write(0,0,'opt_type')
worksheet.write(1,0,'obj')
if model.opt_type==0:
worksheet.write(0,1,'number of vehicles')
else:
worksheet.write(0, 1, 'drive distance of vehicles')
worksheet.write(1,1,model.best_sol.obj)
for row,route in enumerate(model.best_sol.routes):
worksheet.write(row+2,0,'v'+str(row+1))
r=[str(i)for i in route]
worksheet.write(row+2,1, '-'.join(r))
work.close()
(8)主函数
def run(filepath,epochs,popsize,alpha,v_cap,opt_type):
"""
:param filepath: Xlsx file path
:type str
:param epochs:Iterations
:type int
:param popsize:Population size
:type int
:param alpha:Innovation(Control) parameters,(0,1]
:type float,
:param v_cap:Vehicle capacity
:type float
:param opt_type:Optimization type:0:Minimize the number of vehicles,1:Minimize travel distance
:type int,0 or 1
:return:
"""
model=Model()
model.vehicle_cap=v_cap
model.opt_type=opt_type
model.alpha=alpha
model.popsize=popsize
readXlsxFile(filepath,model)
history_best_obj=[]
genInitialSol(model)
history_best_obj.append(model.best_sol.obj)
for ep in range(epochs):
updatePosition(model)
history_best_obj.append(model.best_sol.obj)
print("%s/%s: best obj: %s"%(ep,epochs,model.best_sol.obj))
plotObj(history_best_obj)
outPut(model)
6. 完整代码
代码和数据文件可获取【私信】:
https://download.csdn.net/download/python_n/37357242
参考
- 孙俊.量子行为粒子群优化算法研究[D].江苏:江南大学,2009. DOI:10.7666/d.y1585071.
- 郑伟博.粒子群优化算法的改进及其应用研究[D].山东:青岛大学,2016.
- https://blog.csdn.net/Luqiang_Shi/article/details/84757727