基于python语言,实现竞拍算法(Auction Algorithm)对分配(指派)问题(Assignment Problem)进行求解。
1. 适用场景
- 单一分配问题
- 完全分配问题
2. 案例
假设N个人对N个物品进行竞拍,每个人对每个物品的估值如下表。寻求使得整体利益最大化的分配策略。
商品B1 | 商品B2 | 商品B3 | 商品B4 | |
---|---|---|---|---|
竞拍者A1 | 4 | 8 | 17 | 10 |
竞拍者A2 | 14 | 18 | 17 | 7 |
竞拍者A3 | 9 | 5 | 14 | 10 |
竞拍者A4 | 17 | 18 | 14 | 6 |
3. 代码实现
(1)报价函数
#根据最新价格确定下一轮报价
def bidding(current_assignment,current_prices):
new_bid={}
for bidder in bidder_set:
if bidder in current_assignment:
continue
#未竞拍到物品的继续报价
else:
v_ij=[]
available_object_list=copy.deepcopy(available_objects_for_bidders[bidder])
for object in available_object_list:
v_ij.append(value_matrix[bidder,object]-current_prices[object])
max_v=max(v_ij) #最大收益
bid_target=available_object_list[v_ij.index(max_v)] #最大收益对象
v_ij.remove(max_v)
available_object_list.remove(bid_target)
sub_max_v=max(v_ij) #次大收益
bid_price=value_matrix[bidder,bid_target]-sub_max_v+epsilon #下次报价
if bid_target in new_bid:
new_bid[bid_target][0].append(bidder)
new_bid[bid_target][1].append(bid_price)
else:
new_bid[bid_target]=[[bidder],[bid_price]]
return new_bid
(2)分配函数
#根据最新报价重新分配竞拍结果
def assigning(bid_prices,current_assignment,current_prices):
new_prices={}
for object in object_set:
#收到报价的物品重新竞拍
if object in bid_prices:
bidders,prices=bid_prices[object]
max_price=max(prices)
bidder=bidders[prices.index(max_price)]
new_prices[object]=max_price
for people,object_ in current_assignment.items():
if object_ == object:
current_assignment.pop(people)
current_assignment[bidder]=object
break
if bidder not in current_assignment:
current_assignment[bidder]=object
else:
new_prices[object]=current_prices[object]
return new_prices,current_assignment
(3)主函数
这里采用固定ε值,为提高效率也可采用变动值,具体可阅读文末参考1.
if __name__=='__main__':
#价格矩阵
value_matrix={
('A1', 'B1'): 4 , ('A1', 'B2'): 8 , ('A1', 'B3'): 17, ('A1', 'B4'): 10,
('A2', 'B1'): 14, ('A2', 'B2'): 18, ('A2', 'B3'): 17, ('A2', 'B4'): 7,
('A3', 'B1'): 9 , ('A3', 'B2'): 5 , ('A3', 'B3'): 14, ('A3', 'B4'): 10,
('A4', 'B1'): 17, ('A4', 'B2'): 18, ('A4', 'B3'): 14, ('A4', 'B4'): 6,
}
#竞拍者集合
bidder_set=['A1','A2','A3','A4']
#竞拍对象集合
object_set = ['B1', 'B2', 'B3', 'B4']
#每个竞拍者可竞拍对象集合
available_objects_for_bidders={
'A1': ['B1', 'B2', 'B3', 'B4'],
'A2': ['B1', 'B2', 'B3', 'B4'],
'A3': ['B1', 'B2', 'B3', 'B4'],
'A4': ['B1', 'B2', 'B3', 'B4'],
}
#初始竞拍结果(满足ε互补松弛条件)
current_assignment = {'A1': 'B3', 'A2': 'B2'}
#初始报价
current_prices = {'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0}
#ε阈值
epsilon=1.0
#竞拍过程
k=1
while True:
new_bid=bidding(current_assignment,current_prices)
if len(new_bid)>0:
new_price,new_assignment=assigning(new_bid,current_assignment,current_prices)
current_assignment=new_assignment
current_prices=new_price
else:
break
k += 1
print("第{}次竞拍:".format(k))
print("\t竞拍结果为:")
print("\t",current_assignment)
print("\t最新定价为:")
print("\t",current_prices)
参考
- Bertsekas, D.P. The auction algorithm: A distributed relaxation method for the assignment problem. Ann Oper Res 14, 105–123 (1988). https://doi.org/10.1007/BF02186476
- https://blog.csdn.net/weixin_47546390/article/details/108470396