【树莓派配置YOLO环境❗️B站手把手入门视频教程】

请添加图片描述

🔥全网最适合小白的,树莓派配置YOLO环境入门视频教程。
❗️教程以YOLOv8作为演示,但YOLOv11的安装亦适用~


文章目录


树莓派配置YOLOv8环境(1)环境配置与烧录

树莓派配置YOLOv8环境(2)ssh安装与连接

树莓派配置YOLOv8环境(3)Miniconda安装

树莓派配置YOLOv8环境(4)YOLOv8环境配置

树莓派配置YOLOv8环境(5)系统镜像备份

树莓派(Raspberry Pi)是一个小型、低成本的单板电脑,通常用于入门级的物联网项目和嵌入式系统。要在树莓派5上配置YOLO(You Only Look Once)物体检测模型,你需要完成以下步骤: 1. **安装Linux发行版**:选择适合Raspberry Pi的Linux发行版,如Raspbian或Ubuntu Lite。从官方网下载并安装。 2. **更新系统**: ``` sudo apt-get update sudo apt-get upgrade ``` 3. **安装依赖库**: - CUDA(如果需要GPU加速,对于树莓派4B或更高版本) ```bash sudo apt-get install nvidia-cuda-toolkit ``` - 深度学习框架(TensorFlow或PyTorch): ```bash sudo apt-get install python3-tensorflow (or) pip3 install torch torchvision ``` - YOLO所需的Python库(例如Darknet): ```bash git clone https://github.com/AlexeyAB/darknet.git cd darknet make ``` 4. **下载YOLO模型**: ``` wget https://pjreddie.com/media/files/yolov4.weights ``` 5. **设置环境变量**(如果使用CUDA): ```bash export PATH="/usr/local/cuda/bin:$PATH" ``` 6. **训练或下载预训练模型**: 如果想从头开始训练,需要YOLO的源码和数据集。预训练模型可以在网上找到,如Darknet官网或GitHub。 7. **测试模型**: 使用`darknet detect`命令行工具,传入你的检测模型文件和一张图片或视频进行物体检测。 **相关问题--:** 1. YOLO模型是否支持CPU运行,还是必须要有GPU? 2. 如何验证YOLO树莓派上的物体检测效果? 3. 我可以直接在树莓派上部署YOLO应用做实时监控吗?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只云卷云舒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值