【解决Ultralytics YOLO 训练与验证精度不一致的问题】

【YOLO避坑】Ultralytics YOLO精度"造假"? 训练/验证mAP对不上?揭秘99%人忽视的验证陷阱!

1. 问题描述

在 YOLO 训练结束后的那一次验证结果,与独立验证的结果不一致。

2. 解决方案:参数对齐

验证过程中,batchhalf 参数的设定对结果有显著影响。调整这些超参数以保持训练和验证的一致性,可以有效解决指标不匹配的问题。

  • batch 参数:验证时的 batch 应设置为训练时的两倍。
  • half 参数:启用 half=True 以确保计算精度与训练时一致。

3. 实验验证

3.1 训练结束后的验证结果

在这里插入图片描述

3.2 独立验证的结果(默认参数)

代码

from ultralytics import YOLO
model = YOLO('runs/detect/train24/weights/best.pt')
model.val(data='ultralytics/cfg/datasets/PCB.yaml', save_json=True, workers=0)

结果如下:默认情况下,验证结果与训练时存在一定差异。

在这里插入图片描述

3.3 独立验证的结果(batch 参数对齐)

代码

from ultralytics import YOLO
model = YOLO('runs/detect/train24/weights/best.pt')
model.val(data='ultralytics/cfg/datasets/PCB.yaml', save_json=True, workers=0, batch=64)

结果如下:指标仍未对齐

在这里插入图片描述

3.4 独立验证的结果(batchhalf 参数同时对齐)

代码:

from ultralytics import YOLO
model = YOLO('runs/detect/train24/weights/best.pt')
model.val(data='ultralytics/cfg/datasets/PCB.yaml', save_json=True, workers=0, batch=64, half=True)

结果如下:当 batchhalf 参数都与训练保持一致后,验证指标与训练结束时的表现趋于一致。

在这里插入图片描述

4. 结论

调整 batchhalf 这两个关键超参数,有助于对齐训练与验证的指标,提高模型评估的可靠性。建议在实际应用中,确保这两个参数在训练与验证阶段保持一致,以获得更稳定的评估结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只云卷云舒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值