手把手教你用AnythingLLM搭建本地DeepSeek知识库,小白也能搞定!

信息太多记不住?想找的资料总是散落在各处?

你需要一个专属的个人知识库!今天教你用 AnythingLLM 和 DeepSeek 在本地轻松搭建一个,从此告别信息混乱,效率蹭蹭往上涨!


你需要准备:

  • 一台电脑:配置别太差,内存最好 16G 以上。

  • Docker:一个用来运行 AnythingLLM 的工具,去官网下载安装就行。

  • DeepSeek 账号:注册一个,然后获取 API Key,这是连接 DeepSeek 的钥匙。如果要使用其他LLM模型,都是一样的流程。


本地 Desktop 搭建步骤

1. 准备工作

  • 下载 AnythingLLM Desktop 版本

  • 访问 AnythingLLM 官方 GitHub 页面:


  • 在 Releases 页面下载适合你操作系统的 Desktop 版本(Windows、macOS 或 Linux)。

  • 获取 DeepSeek API Key

  • 注册并登录 DeepSeek。

  • 在个人中心找到 API Key,复制保存备用。

2. 安装 AnythingLLM Desktop

  • Windows 用户:

  • 双击下载的 .exe 文件,按照提示完成安装。

  • 安装完成后,桌面会生成快捷方式,双击启动。

  • macOS 用户:

  • 双击下载的 .dmg 文件,将 AnythingLLM 拖到 Applications 文件夹。

  • 打开 Applications 文件夹,双击 AnythingLLM 启动。

  • Linux 用户:

  • 解压下载的 .tar.gz 文件。

  • 进入解压后的目录,运行以下命令启动:

./AnythingLLM


3. 配置 DeepSeek

  • 启动 AnythingLLM:

打开 AnythingLLM,进入主界面。点击左侧菜单栏的 Settings。


  • 选择 LLM Provider:

在 Settings 页面,找到 LLM Provider,选择 DeepSeek。

  • 输入 API Key:

在 API Key 输入框中,粘贴你从 DeepSeek 获取的 API Key。选择适合的模型(例如 deepseek-chat)。点击 Save 保存配置。


4. 创建知识库

  • 点击 Knowledge Bases:

在左侧菜单栏,点击 Knowledge Bases。点击 Create a New Knowledge Base。

  • 填写知识库信息:

输入知识库名称(例如 “我的学习笔记”)。添加描述(可选)。点击 Create 完成创建。

也可以从学术研究的角度创建知识库,可以帮助你更好地管理文献综述、数据集、数据分析、算法模型等内容。例如:

  • 文献综述库:用于存储和管理相关领域的经典论文和最新研究。

  • 数据集库:整理常用的公开数据集及其描述。

  • 数据分析库:保存数据分析方法和代码。

  • 算法模型库:记录算法实现和模型调优经验。

为每个知识库命名并添加简要描述,例如“文献综述库:存储 NLP 领域的最新论文”或“数据集库:整理计算机视觉常用数据集”。


  • 应用场景举例来说,比如文献综述库的使用:

在 文献综述库 中,点击 Add Documents,上传 PDF 格式的论文。你可以批量上传多篇文献,方便整理。为每篇文献添加标签,例如研究领域(NLP、CV、强化学习等)、论文类型(综述、实验、理论等)和年份(2020、2021、2022 等)。

上传完成后,你可以在聊天界面提问,例如:“这篇论文的主要贡献是什么?” 或 “列出最近 5 年关于强化学习的综述论文。”

AnythingLLM 会自动从文献中提取信息并生成回答,帮助你快速了解论文内容。


  • 再比如,你正在研究自然语言处理(NLP)领域:

你可以创建一个 文献综述库,上传最新的 NLP 论文,并添加标签(如“Transformer”、“BERT”)。

数据集库 中,整理常用的 NLP 数据集(如 GLUE、SQuAD),并上传数据加载代码。

数据分析库 中,保存文本分类和情感分析的代码。

算法模型库 中,记录 BERT 模型的实现和调优经验。

通过 AnythingLLM,你可以快速提问,例如:“BERT 模型的主要创新点是什么?” 或 “GLUE 数据集的下载链接是什么?”

系统会从知识库中提取相关信息并生成回答。

以上,大家可以自己动手试试建立自己的知识库,并通过提问的方式获取相应的信息,并进行管理~


5. 进阶玩法:

  • 训练你自己的 DeepSeek 模型,让知识库更懂你。

  • 把 AnythingLLM 和其他笔记软件连接起来,比如 Notion、Obsidian,打造你的知识管理生态系统。

  • 分享你的知识库,和小伙伴一起学习进步。

小提示:

  • 如果遇到问题,可以查看 AnythingLLM 官方文档。

  • 确保你的电脑性能足够,尤其是处理大量文档时。

篇幅有限,后续与大家分享~


通过 AnythingLLM Desktop 版本,你可以轻松在本地搭建一个功能强大的 DeepSeek 知识库。

无论是学习笔记、工作资料,还是个人兴趣收藏,都可以高效管理。赶紧试试吧!

以上,就是这么简单!赶紧动手试试吧,打造你的专属知识库,开启高效学习工作新篇章!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,我现在需要帮助用户了解如何使用Qwen3大模型搭建本地知识库。根据用户提供的引用内容,之前他们部署了Qwen2.5模型,现在想升级到Qwen3。我需要结合之前的回答和引用中的信息,给出一个清晰的步骤指南。 首先,用户提到了Ollama和Dify的部署,所以可能需要在教程中包含这些工具的使用。用户之前部署了Qwen2.5,现在转向Qwen3,我需要确认Qwen3是否支持类似的部署方法,或者是否需要额外的步骤。 接下来,用户提到要结合本地知识库作为Dify的上下文,这意味着需要将知识库集成到Dify中,可能涉及文档加载、向量化存储和检索增强生成(RAG)的应用。这部分需要详细说明如何处理知识库文件,如何配置Dify来使用这些数据。 另外,用户提供的引用中有关于资料领取的部分,但根据系统指令,应避免无关推广,所以需要忽略这部分内容,专注于技术步骤。 还需要考虑用户可能的痛点,比如环境配置、模型下载、知识库格式要求等。需要分步骤解释,确保用户能逐步操作,同时注意技术细节的正确性,比如正确的Ollama命令、Dify的配置参数等。 最后,生成相关问题时要围绕搭建过程中的常见问题、优化方法和应用场景展开,帮助用户进一步探索。</think>### 使用Qwen3大模型搭建本地知识库的详细教程 #### 一、环境准备与模型部署 1. **私有化部署Qwen3模型** 使用Ollama工具部署Qwen3模型(7B或更高参数版本): ```bash # 拉取Qwen3模型(假设已支持) ollama pull qwen3:7b # 启动模型服务 ollama serve ``` 若官方未直接支持,可手动构建`Modelfile`: ```dockerfile FROM qwen/qwen3:7b PARAMETER temperature 0.7 SYSTEM "你是一个专业的知识库问答助手" ``` 2. **验证模型可用性** 通过CURL测试API接口: ```bash curl http://localhost:11434/api/generate -d '{ "model": "qwen3:7b", "prompt": "量子力学三大基本原理是什么?" }' ``` #### 二、知识库构建与处理 1. **文档格式规范** - 支持格式:PDF/TXT/MarkDown/HTML - 推荐预处理:使用Python库清洗文本 ```python from bs4 import BeautifulSoup def clean_html(raw_html): soup = BeautifulSoup(raw_html, "html.parser") return soup.get_text() ``` 2. **向量化存储** 使用LangChain构建向量数据库: ```python from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh") documents = [...] # 预处理后的文档列表 vector_db = FAISS.from_documents(documents, embeddings) vector_db.save_local("my_knowledge_base") ``` #### 三、Dify平台集成(社区版) 1. **部署Dify服务** ```bash git clone https://github.com/langgenius/dify cd dify/docker docker-compose up -d ``` 2. **配置知识库连接** 在Dify控制台: - 新建应用 → 选择「知识库问答」 - 上传预处理文档或连接现有向量库 - 设置检索参数: ```yaml retriever: search_type: "similarity" k: 5 score_threshold: 0.7 ``` 3. **RAG流程配置** ```python # 自定义处理链示例 from langchain_core.runnables import RunnablePassthrough retriever = vector_db.as_retriever() qa_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt_template | llm | output_parser ) ``` #### 四、效果优化技巧 1. **混合检索策略** 结合关键词搜索与向量检索: ```python from langchain.retrievers import BM25Retriever, EnsembleRetriever bm25_retriever = BM25Retriever.from_documents(docs) ensemble_retriever = EnsembleRetriever( retrievers=[bm25_retriever, vector_retriever], weights=[0.4, 0.6] ) ``` 2. **查询扩展** 使用Query2Doc技术增强检索: ```python from transformers import pipeline expander = pipeline("text-generation", model="Qwen/Qwen1.5-7B") expanded_query = expander(f"生成与'{query}'相关的三个扩展问题") ``` #### 五、监控与维护 1. **日志分析配置** ```bash # 查看Dify请求日志 docker logs -f dify-api ``` 2. **知识库更新机制** ```python # 增量更新脚本示例 def update_knowledge(new_docs): global vector_db vector_db.add_documents(new_docs) vector_db.save_local("my_knowledge_base") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值