李宏毅教授的《生成式AI导论2024》是2024年春季在台湾大学开设的一门系统性课程,重点围绕生成式人工智能(Generative AI)的基础理论、技术演进及实践应用展开。
一、课程概况
课程定位:面向生成式AI的入门到进阶学习者,涵盖生成式模型的基础原理、大型语言模型(LLM)的演化、微调技术(Fine-tuning)、提示工程(Prompt Engineering)等核心内容。
课程总共包含18节,10次作业,还有14个扩展视频。
授课形式:课程以视频为主,配套PPT、作业及代码实践,部分资源通过课程主页及GitHub开源共享。
课程主页:
https://speech.ee.ntu.edu.tw/~hylee/genai/2024-spring.php
二、课程内容与结构
课程共分为多讲,核心主题包括:
1. 生成式AI基础:定义生成式AI与分类问题的区别,探讨其挑战(如从海量可能性中生成合理结果)。
2. 大型语言模型(LLM)发展史:从预训练(Pre-training)到指令微调(Instruction Fine-tuning),分析ChatGPT和LLaMA等模型的演化。
3. 技术细节:
生成策略:文本、图像、语音的生成方式差异(如逐字生成 vs. 一次性生成)。
模型优化:LoRA、Adapter等参数高效微调方法,思维链(Chain-of-Thought)对模型性能的提升。
4. 实践应用:通过作业实现LLM微调(如让模型生成唐诗)、Prompt工程开发应用等。
三、课程亮点
教学风格:李宏毅以通俗易懂的讲解著称,常结合动漫案例(如精灵宝可梦)阐释复杂技术,降低学习门槛。
实践导向:强调从理论到代码的完整链路,例如通过微调模型实现特定任务,并分析模型参数与显存的关系。
前沿覆盖:涉及GPT-4o、Diffusion模型、伦理问题等最新议题。
四、学习路径
1. 观看视频并配合PPT理解理论;
2. 完成作业巩固实践;
3. 参考社区笔记及开源代码深化理解。
五、资源获取
中文课程入口:
【李宏毅大模型】2025李宏毅教授AI全栈系统课程,一口气把最新生成式AI教程讲清楚,入门到实战,通俗易懂,一套全解决!_哔哩哔哩_bilibili
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓