李宏毅生成式 AI 导论:最好的 LLM 大模型教程!

李宏毅教授的《生成式AI导论2024》是2024年春季在台湾大学开设的一门系统性课程,重点围绕生成式人工智能(Generative AI)的基础理论、技术演进及实践应用展开。

图片

一、课程概况

课程定位:面向生成式AI的入门到进阶学习者,涵盖生成式模型的基础原理、大型语言模型(LLM)的演化、微调技术(Fine-tuning)、提示工程(Prompt Engineering)等核心内容。

图片

课程总共包含18节,10次作业,还有14个扩展视频。

授课形式:课程以视频为主,配套PPT、作业及代码实践,部分资源通过课程主页及GitHub开源共享。

课程主页:

https://speech.ee.ntu.edu.tw/~hylee/genai/2024-spring.php

二、课程内容与结构

课程共分为多讲,核心主题包括:

1. 生成式AI基础:定义生成式AI与分类问题的区别,探讨其挑战(如从海量可能性中生成合理结果)。

2. 大型语言模型(LLM)发展史:从预训练(Pre-training)到指令微调(Instruction Fine-tuning),分析ChatGPT和LLaMA等模型的演化。

3. 技术细节:

生成策略:文本、图像、语音的生成方式差异(如逐字生成 vs. 一次性生成)。

模型优化:LoRA、Adapter等参数高效微调方法,思维链(Chain-of-Thought)对模型性能的提升。

4. 实践应用:通过作业实现LLM微调(如让模型生成唐诗)、Prompt工程开发应用等。

三、课程亮点

教学风格:李宏毅以通俗易懂的讲解著称,常结合动漫案例(如精灵宝可梦)阐释复杂技术,降低学习门槛。

实践导向:强调从理论到代码的完整链路,例如通过微调模型实现特定任务,并分析模型参数与显存的关系。

前沿覆盖:涉及GPT-4o、Diffusion模型、伦理问题等最新议题。

四、学习路径

1. 观看视频并配合PPT理解理论;

2. 完成作业巩固实践;

3. 参考社区笔记及开源代码深化理解。

五、资源获取

中文课程入口:

【李宏毅大模型】2025李宏毅教授AI全栈系统课程,一口气把最新生成式AI教程讲清楚,入门到实战,通俗易懂,一套全解决!_哔哩哔哩_bilibili

图片

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### 李宏毅生成式AI导论课程资料概述 #### 课程简介 李宏毅教授的《生成式AI导论》是一门深入浅出介绍生成式人工智能理论和技术的课程。该课程不仅涵盖了生成式AI的基础概念和发展历程,还探讨了当前最前沿的研究成果及其实际应用场景[^1]。 #### 主要内容概览 - **第0讲:课程说明** - 对整个系列讲座的内容框架进行了详细介绍。 - **第1讲:生成式AI是什么?** - 解释了生成式AI的核心定义以及其与其他类型的人工智能的区别所在。 - **第二讲:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」** - 探讨现代生成式AI的强大之处,并分析这些进步如何使机器不仅仅作为辅助工具存在,而是能够承担更多自主任务的角色转变过程。 - **第三讲:训练不了人工智能?你可以训练你自己(上)** - 讨论个人技能提升的重要性,特别是在面对复杂多变的技术环境时自我调整和适应的方法论建议。 #### 结构化学习与生成式学习的关系 在过去,“结构化学习”指的是让计算机学会处理具有特定格式的数据;而如今所说的“生成式学习”,则是指通过大量无标注数据来构建可以创造新样本或模拟真实世界现象的概率分布模型。尽管两者名称不同,但在某些方面确实存在着一定的联系——它们都涉及到模式识别、特征提取等关键技术环节。然而值得注意的是,在具体实现方式和技术细节层面二者之间差异巨大,尤其是在近十年间随着深度学习算法的发展,后者取得了前所未有的突破性进展[^2]。 #### 获取资源途径 为了方便国内学生获取最新版本的教学材料,《李宏毅2024生成式人工智能导论》提供了中文镜像版指导文档及配套练习题库,所有相关内容均已托管至GitHub平台供免费下载使用。这一举措得到了原作者正式授权许可,体现了教育工作者对于知识传播开放共享精神的支持态度[^3]。 ```bash git clone https://github.com/user/repo.git cd repo ``` 上述命令可以帮助用户轻松克隆仓库并浏览其中包含的各种教学素材。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值