大家好,我是凡人。
前两天有好几个朋友在问我,有没有大厂出品的权威AI课程,在对比40多个免费AI课程后,选择了微软和吴恩达两门公开课程,他们在GitHup上有超高的人气,分别是18.3K和66.1K颗星,下面我们就一起来看看这两门课程。
一、generative-ai-for-beginners
网址:https://github.com/microsoft/generative-ai-for-beginners
Generative AI for Beginners(生成式人工智能入门)是为了帮助初学者掌握构建生成式人工智能(Generative AI)应用的基础知识和技能,涵盖从理论学习到实践操作的全方位内容。
课程有21节课,主要内容包含文章和视频:
- 入门知识
介绍生成式人工智能的概念,解释大型语言模型(LLMs)的工作原理,帮助学员理解生成式AI的基本原理和应用场景.
- 模型选择与应用
探讨如何根据具体需求选择合适的模型,比较不同模型的优缺点,指导学员在实际项目中合理应用各种模型.
- 负责任地使用生成式AI
强调在构建生成式AI应用时应遵循的伦理原则和规范,确保应用的合规性和安全性.
- 提示工程(Prompt Engineering)
深入讲解提示工程的基础知识和最佳实践,包括如何设计有效的提示来提升生成结果的质量和相关性.
- 应用构建
通过丰富的实践课时,指导学员使用Python和TypeScript等编程语言,结合Azure OpenAI和OpenAI API等工具,构建各类生成式AI应用,如文本生成、聊天应用、搜索应用、图像生成等.
- 集成与扩展
教授如何将生成式AI应用与外部系统和工具进行集成,实现功能扩展和应用优化.
- 用户体验设计(UX)
分享在开发生成式AI应用时如何应用用户体验设计原则,提升应用的易用性和用户满意度.
- 应用安全与生命周期管理
分析生成式AI应用面临的安全威胁和风险,介绍如何采取措施保障系统的安全性,同时讲解应用的生命周期管理工具和方法,包括LLM生命周期和LLMOps等.
- 高级主题
涵盖检索增强生成(RAG)和向量数据库、开源模型和Hugging Face、AI代理、微调LLMs、使用小型语言模型(SLMs)和Mistral模型、Meta模型等高级内容,拓展学员的知识边界,为深入学习和应用生成式AI打下坚实基础.
二、deeplearning_ai_books
网站:https://github.com/fengdu78/deeplearning_ai_books
deeplearning.ai是由吴恩达老师主讲的深度学习课程,专为有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解)的计算机专业人士准备,旨在帮助他们掌握深度学习技能,进入人工智能领域。
课程共包含5门课程,涵盖深度学习的基础知识、神经网络构建、机器学习项目实践等多个方面,由浅入深地引导学员学习。
课程语言为Python,使用Google开源的TensorFlow框架。吴恩达老师亲自授课,两名助教来自斯坦福计算机系,课程内容权威且实用。完成课程后,Coursera将授予学员“Deep Learning Specialization”结业证书。
B站地址如下:
https://www.bilibili.com/video/BV16r4y1Y7jv/
课程内容包含:
- 第一门课:神经网络和深度学习
- 深度学习引言
介绍神经网络的基本概念、监督学习方法、深度学习的流行原因等基础知识.
- 神经网络的编程基础
:讲解二分类、逻辑回归、梯度下降、导数计算等核心算法,并通过计算图和向量化等技术优化实现.
- 浅层神经网络
深入探讨神经网络的表示、输出计算、激活函数、梯度下降等关键环节,帮助学员理解神经网络的工作原理.
- 深层神经网络
介绍深层神经网络的结构、前向传播和反向传播过程、深层表示的优势等内容,为构建复杂的深度学习模型奠定基础.
- 深度学习引言
- 第二门课:改善深层神经网络:超参数调试、正则化以及优化
- 深度学习的实用层面
讲解训练、验证、测试集的划分,偏差和方差的分析,正则化方法(如dropout)等,帮助学员提升模型性能.
- 优化算法
介绍Mini-batch梯度下降、指数加权平均、momentum梯度下降、RMSprop、Adam优化算法等,优化模型训练过程.
- 超参数调试,batch正则化和程序框架
探讨超参数调试技巧、Batch Normalization的应用及其原理、深度学习框架(如TensorFlow)的使用.
- 深度学习的实用层面
- 第三门课:结构化机器学习项目
- 机器学习策略(1)
讲解ML策略的重要性、正交化、评估指标的选择、训练集和开发集的划分等,指导学员制定有效的机器学习项目计划.
- 机器学习策略(2)
深入探讨误差分析、数据标注错误处理、快速搭建系统并迭代、不同分布上的训练集和测试集处理等策略,提升项目实施效果.
- 机器学习策略(1)
- 第四门课:卷积神经网络
- 卷积神经网络基础
介绍计算机视觉、边缘检测、卷积操作、池化层等基础概念,帮助学员理解卷积神经网络的构建原理.
- 深度卷积网络:实例探究
通过经典网络(如ResNets、Inception网络)的案例分析,讲解网络结构设计和优化方法.
- 目标检测
探讨目标定位、特征点检测、目标检测算法(如YOLO)等技术,应用于图像中目标的识别和定位.
- 特殊应用:人脸识别和神经风格转换
介绍人脸识别技术(如One-Shot学习、Siamese网络)、神经风格转换的原理和实现方法,拓展深度学习的应用场景.
- 卷积神经网络基础
- 第五门课:序列模型
- 循环序列模型
讲解循环神经网络(RNN)的基本结构和工作原理,包括通过时间的反向传播、不同类型的RNN(如GRU、LSTM)、双向循环神经网络等.
- 自然语言处理与词嵌入
探讨词汇表征、词嵌入的使用和特性、Word2Vec、GloVe等技术,应用于自然语言处理任务.
- 序列模型和注意力机制
介绍基础模型、集束搜索、注意力模型等技术,应用于机器翻译、语音识别等序列生成任务.
- 循环序列模型
所以还等什么呢,赶紧将掌握到的资源,来打破AI知识壁垒,迎接AI时代的到来。
怎么样今天的内容还满意吗?再次感谢朋友们的观看,关注GZH:凡人的AI工具箱,回复666,送您价值199的AI大礼包。最后,祝您早日实现财务自由,还请给个赞,谢谢!