什么是RAG与我们为什么要用RAG?

检索增强生成(RAG)是一种流行的技术,通过在生成答案之前从知识库中检索相关的外部知识来增强 LLM 的响应。RAG 提高了准确性,减少了幻觉,并使模型能够提供更符合上下文和更新的信息。

RAG 包括三个步骤:检索、增强和生成。

检索 - 在此步骤中,系统会在外部知识源(例如向量数据库)中搜索相关信息,以基于用户查询找到相关的信息。

增强 - 检索到的信息随后与原始用户查询结合,形成 LLM 的提示。

生成 - LLM 处理提示并生成响应,整合其预训练知识和检索到的信息。这使得响应更加准确且符合上下文。

让我们通过一个简单的例子来理解 RAG。

m9MoNp

1 - 用户提出查询

示例:2025年ICC冠军奖杯的获胜者是谁?

2 - 检索器在知识源(例如维基百科或互联网)中搜索,并返回相关上下文。

示例检索上下文:"2025年ICC冠军奖杯于2月19日至3月9日在巴基斯坦和阿拉伯联合酋长国举行,最终印度成为胜利的冠军,赢得了该赛事历史上的第三个冠军。主要由巴基斯坦主办——这是自1996年以来他们的首次全球板球赛事——该赛事实施了混合模式,由于地缘政治考虑,印度的所有比赛都在迪拜进行。决赛在迪拜国际板球场上演了一场紧张的比赛,印度以四个门柱的优势击败新西兰,追平了252分的目标,并且还剩下一局。 "

3 - 查询、相关上下文和指令被组合成一个提示。

示例提示:

"仅根据上下文回答查询。如果在上下文中找不到查询的答案,请回复 - 我无法回答该查询。

查询:2025年ICC冠军奖杯的获胜者是谁?

*上下文:*2025年ICC冠军奖杯于2月19日至3月9日在巴基斯坦和阿拉伯联合酋长国举行,最终印度成为胜利的冠军,赢得了该赛事历史上的第三个冠军。主要由巴基斯坦主办——这是自1996年以来他们的首次全球板球赛事——该赛事实施了混合模式,由于地缘政治考虑,印度的所有比赛都在迪拜进行。决赛在迪拜国际板球场上演了一场紧张的比赛,印度以四个门柱的优势击败新西兰,追平了252分的目标,并且还剩下一局。"

4 - 提示被输入到大型语言模型 (LLM) 中,LLM 根据提供的上下文为用户查询生成答案。

示例输出:“印度在迪拜国际板球场举行的决赛中以四个门柱的优势击败新西兰,赢得了2025年ICC冠军奖杯。”

RAG 应用

AI 搜索引擎

AI 搜索引擎使用 RAG 通过将大型语言模型与实时数据检索相结合来增强搜索结果,提供准确且符合上下文的答案。它们擅长理解自然语言查询并从海量数据集中提取信息,使搜索更加直观和高效。

客户服务聊天机器人

客户服务聊天机器人利用 RAG 通过检索公司特定数据(如常见问题或产品手册)并生成类似人类的回复,提供个性化和准确的响应。这缩短了响应时间,提高了客户满意度,并处理了超出简单脚本答案的复杂查询。

法律文件分析

法律文件分析采用 RAG 筛选大量的法律文本、合同或判例法,检索相关的条款或先例,并用通俗易懂的语言总结它们。它通过加速研究、确保准确性并从密集的文档中识别关键见解来帮助律师。

科学研究辅助

科学研究辅助使用 RAG 通过检索和综合来自科学论文、数据集或实验的信息,为研究人员提供简洁的摘要或假设。它简化了文献综述、事实核查和跨大量研究存储库探索复杂主题的过程。

医疗决策支持

医疗决策支持将 RAG 集成到患者数据、医学文献或治疗指南中,协助医生做出基于证据的建议或诊断。它通过提供最新的、特定上下文的见解来增强决策过程,同时优先考虑患者隐私和准确性。

个性化教育

个性化教育应用 RAG 定制学习体验,检索相关的教育资源并生成适合学生学习进度和理解水平的解释。它通过适应个人需求并有效填补知识空白来支持导师或自学者。

技术文档搜索

技术文档搜索利用 RAG 导航复杂的手册、代码库或故障排除指南,检索精确的解决方案并清晰地解释它们。它通过快速解决技术查询并提供具有上下文感知的详细响应,为开发人员和工程师节省时间。

为什么需要 RAG?

大型语言模型(LLMs)通常在庞大的数据集上进行训练,这些数据集包括书籍、维基百科、网站的文本以及来自 GitHub 仓库的代码。这些训练数据收集到特定日期为止,这意味着 LLM 的知识有一个与训练数据最后更新时间相关的截止点。例如,如果 LLM 的训练数据只到2023年12月,那么它对之后发生的事情一无所知。

KXy4aS

没有 RAG 时,当用户询问超出该截止日期的事件、发展或信息时,LLM 面临一个问题:它要么无法提供答案(使查询未解决),更糟糕的是,它可能会“幻觉”,生成听起来合理但不正确的响应。这是因为 LLM 被设计为根据其训练数据中的模式预测和生成文本,而不是天生能够区分它们知道什么和不知道什么。

CDOKJE

通过 RAG,这一限制通过集成检索机制得以解决。当提出查询时——尤其是与近期事件相关的查询——检索器会从外部来源(如网络数据、数据库或 X 等平台上的帖子)实时获取相关且最新的上下文。

然后将检索到的信息作为附加上下文提供给 LLM,使其能够基于最新可用数据生成准确且有依据的响应,而不仅仅是依赖其静态的预训练知识。本质上,RAG 弥补了 LLM 固定训练截止点与不断变化的世界之间的差距,确保更可靠和当前的答案。

VJZQU2

总结如下:

LLMs 在大量书籍、维基百科、网站文本和 GitHub 代码库中进行训练。然而,它们的训练数据仅限于特定日期之前可用的信息。这意味着它们的知识在该日期被截断

没有 RAG 的问题

  • LLMs 无法回答 关于其训练截止日期之后发生的事件或事实的查询。

  • 它们可能会生成不正确或幻觉的响应,使得它们在提供最新信息时不可靠。

带有 RAG 的解决方案

  • 检索

     来自外部知识源(如数据库、API 或私人文档)的相关内容。

  • 提供

     检索到的相关内容作为上下文与查询一起提供给 LLM,使其能够生成事实准确的答案。

  • 确保响应以检索到的信息为依据,减少幻觉。

因此,RAG 通过保持 LLM 更新来增强它们,而无需频繁重新训练。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### RAG框架概念 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了传统信息检索技术和现代自然语言处理中的生成模型的方法。这种方法允许机器学习系统不仅依赖于训练数据内部的知识,还能动态访问外部知识源,在面对新问题时获取最新、最准确的信息[^4]。 RAG 技术特别适用于那些需要持续更新或扩展背景资料的任务场景,比如问答系统、对话代理以及文档摘要等应用。通过引入外部资源作为补充材料,可以有效地减少由纯神经网络预测带来的不确定性——即所谓的“幻觉”现象,从而提高输出内容的真实性和可靠性。 ### 开源实现汇总 #### 1. **RAGFlow** 作为一个新兴的开源项目,RAGFlow 致力于简化基于 RAG 架构的应用开发过程。此工具包提供了多个预先配置好的模块和支持自动化的工作流设计,使得开发者能够更便捷地集成各种类型的数据库和服务接口,进而加速原型搭建和技术验证的速度[^2]。 - 显著特性: - 提供了一套完整的预构建组件; - 支持多种主流的数据存储方案; - 集成了先进的索引机制以优化查询效率; ```python from ragflow import PipelineBuilder pipeline = PipelineBuilder().add_retriever('elasticsearch').add_generator('transformers') ``` #### 2. **基于ChatGLM 和LangChain 实现的大规模离线部署方案** 这类解决方案专注于为企业级用户提供安全可控且高效的本地化部署选项。借助强大的中文理解能力(如 ChatGLM),再加上灵活易用的应用编程接口(APIs),这套组合拳可以在不连接互联网的情况下完成复杂的语义理解和响应生成任务[^3]。 ```bash git clone https://github.com/your-repo/chatglm-langchain.git cd chatglm-langchain pip install -r requirements.txt python app.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值