LangGraph 实战:用 Python 打造有状态智能体

LangGraph 是一个专为构建有状态多节点执行流程的 AI 智能体系统设计的 Python 框架,它将状态机(State Machine)与图结构(Graph)相结合,使得开发者能够直观地用"节点+边"来描述执行逻辑和状态转移。

本文首先概述 LangGraph 的核心特点及设计理念,然后以"智能客服"场景为例,演示其基本用法和典型代码。

摘要

  • • 状态驱动与有向图:LangGraph 通过 State(通常用 TypedDict 定义)贯穿整个执行流程,所有节点读取并更新状态局部;有向图(Graph)则定义了节点之间的控制流 ([LangChain AI][1])。

  • • 节点与边:每个 Node 表示一个执行单元(如 LLM 调用、工具函数、决策逻辑),Edge 则可携带条件实现分支或循环,使流程更灵活可控 ([DEV Community][2])。

  • • 可循环的工作流:区别于传统的 DAG(有向无环图),LangGraph 支持循环结构(cycles),更适合实现多轮决策与重试机制 ([Medium][3])。

  • • 与 LangChain 深度集成:所有 LangChain 的 Runnable(例如 ChainTool、LLM 模型)都可直接作为节点使用,复用生态组件,增强扩展性 ([LangChain AI][1])。

  • • 持久化与可视化:可接入 LangSmith 进行调用跟踪与日志记录,也可通过 graph.get_graph().draw() 利用 NetworkX 和 matplotlib 输出流程图,便于调试与监控 ([LangChain][4])。


一、为何需要 LangGraph?

  1. 1. 复杂流程可视化:对话、任务执行、工具调用等往往需要多步交互和条件判断,传统端到端调用缺乏透明度和可控性;LangGraph 用图结构清晰呈现每一步逻辑 ([Medium][5])。

  2. 2. 有状态管理:在多轮对话或长流程中,维护上下文与中间结果至关重要;LangGraph 将所有上下文统一存放在 State,节点只需专注局部更新,简化状态传递 ([LangChain AI][1])。

  3. 3. 支持循环与分支:企业级智能体常常需要重试、分支判断或任务迭代,LangGraph 原生支持带条件的循环边(cycles)和分支边(conditional edges),实现更强的流程控制 ([Medium][3])。

  4. 4. 生态复用:构建在 LangChain 之上,可复用其丰富的模型、检索、工具等组件,更快上手并保持一致的开发体验 ([LangChain AI][1])。


二、核心概念

概念说明
State

全局状态,由 TypedDict 定义,包含历史消息、中间结果等;每个节点接收并返回部分状态更新。

Node

执行单元,可以是调用 LLM、执行函数、判断逻辑等;输入当前 State,输出新的状态片段。

Edge

状态转移路径,可添加条件函数,实现 if/else 分支或循环控制。

Graph

有向图结构,将多个节点和边连接成完整工作流,编译后产生可执行 graph.invoke(state) 方法。

工作原理LangGraph 会根据图的拓扑与边的判断函数,自动执行对应节点,并将各节点的状态更新按定义合并到全局 State 中,直至到达指定的终点(Finish Point) ([DEV Community][2])。


三、示例:智能客服 Agent

下面以"智能客服"为例,展示如何用 LangGraph 构建一个能够判断是否调用外部"工具"并返回结果的简单对话流程。

3.1 环境依赖

pip install langchain_core langgraph dotenv langchain langchain_community openai langchain-openai

.env 文件中:

OPENAI_API_BASE=https://api.deepseek.com/v1
OPENAI_API_KEY=sk-xxxxxx

LANGSMITH_TRACING=true
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY="lsv2_pt_xxxxx"
LANGSMITH_PROJECT="pr-gripping-yak-45"

3.2 定义状态

from typing import TypedDict, List
from langchain_core.messages import BaseMessage

#%% 3. 定义对话状态结构
class AgentState(TypedDict):
    messages: List[BaseMessage] # 对话历史
    agent_outcome: str # 下一步决策:tool 或 final
    tool_response: str # 工具调用结果

3.3 定义节点

#%% 4. 初始化大模型
llm = ChatOpenAI(model_name="deepseek-chat", verbose=True)

#%% 5. 节点函数定义
defagent_decision_node(state: AgentState) -> dict:
    last_message = state["messages"][-1].content
    prompt = ChatPromptTemplate.from_template(
        "请判断用户的意图:\n"
        "用户输入:{input}\n\n"
        "如果需要调用工具,请回答 tool;否则回答 final。"
    )
    decision = llm.invoke(prompt.format_messages(input=last_message)).content.strip().lower()
    print(f"\n[Agent Decision] outcome = {decision}")
    return {"agent_outcome": decision if decision in ("tool", "final") else"final"}

deftool_node(_: AgentState) -> dict:
    return {"tool_response": "明天晴,气温25°C,适合出行。"}

deffinal_node(state: AgentState) -> dict:
    # 获取工具的响应,或者默认消息
    reply = state.get("tool_response", "很高兴为您服务!")
    
    # 获取当前时间戳,作为元数据
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    # 可以添加额外的元数据,例如,用户的原始输入
    user_input = state["messages"][-1].content
    
    # 打印出回复信息及其附加内容
    print(f"回复: {reply}, 时间: {timestamp}, 用户输入: {user_input}")
    
    # 返回包含原始消息和回复的消息记录
    return {
        "messages": state["messages"] + [AIMessage(content=reply)],
        "metadata": {
            "timestamp": timestamp,
            "user_input": user_input,
            "reply_length": len(reply),
        }
    }

3.4 构建并编译图

#%% 6. 构建 LangGraph 工作流
def build_graph():
    workflow = StateGraph(AgentState)
    workflow.add_node("agent", agent_decision_node)
    workflow.add_node("tool", tool_node)
    workflow.add_node("final", final_node)
    workflow.set_entry_point("agent")
    workflow.set_finish_point("final")
    workflow.add_conditional_edges("agent", lambda st: st["agent_outcome"], {"tool": "tool", "final": "final"})
    workflow.add_edge("tool", "final")
    return workflow.compile()

# 编译一次,供全局使用
graph = build_graph()

3.5 调用测试

#%% 7. 运行测试
def test_run():
    init_state = {"messages": [HumanMessage(content="请问明天天气如何?")]}
    result = graph.invoke(init_state)
    print("\n对话记录:")
    for msg in result["messages"]:
        print(f"[{msg.type}]: {msg.content}")

通过修改判断逻辑、替换工具节点为真实 API、或在 State 中增加更多字段(如意图、对话轮次等),即可快速扩展为更复杂的客服或业务流程 ([LangChain AI][1], [Medium][5])。


四、可视化与调试

LangGraph 支持将工作流导出为 NetworkX 图结构,便于通过 matplotlib 进行流程图可视化,同时也支持生成 Mermaid 或 PNG 格式的图示。此外,LangGraph 可无缝集成 LangSmith,实现对智能体执行过程的可视化调试与追踪。

4.1 流程图生成

#%% 8. 使用 Mermaid 可视化工作流
def visualize_workflow_with_mermaid(graph):
    mermaid_code = graph.get_graph().draw_mermaid()  # 获取 Mermaid 格式代码
    
    # 通过 IPython 显示 Mermaid 图
    display(Markdown(f"```mermaid\n{mermaid_code}\n```"))

输出结果:

 

__start__

agent

tool

final

__end__

4.2 LangSmith 集成调试

通过 LangSmith 记录执行过程:

#%% 9. LangSmith 追踪(可选)
defrun_with_langsmith(input_state):
    if"LANGSMITH_API_KEY"in os.environ:
    
        @traceable
        deftraced_fn(state):
            return graph.invoke(state)

        result = traced_fn(input_state)
        print("\n[Traced] 对话记录:")
        for msg in result["messages"]:
            print(f"[{msg.type}]: {msg.content}")
    else:
        print("\n跳过 LangSmith 集成:未设置 LANGSMITH_API_KEY")
        
#%% 10. 主入口
if __name__ == "__main__":
    visualize_workflow_with_mermaid(graph)
    # test_run()
    run_with_langsmith({"messages": [HumanMessage(content="北京天气怎么样?")]})

在 LangSmith 控制台中可查看:

  1. 1. 各节点执行耗时

  2. 2. 状态变更历史

  3. 3. 条件边判断结果


五、拓展与实践建议

  1. 1. 高级决策:将 agent_decision_node 替换成 OpenAI Functions,实现更丰富的意图识别与工具选择 ([LinkedIn][6])。

  2. 2. 多工具调用:在 State 中维护工具队列,实现同时调用多个服务(搜索、计算、翻译等)。

  3. 3. 持久化存储:集成数据库或持久化层(如 Redis、Postgres),保存长期会话或任务进度。

  4. 4. 监控与回溯:接入 LangSmith,开启 Trace 跟踪,实时查看节点执行时间及状态变更 ([LangChain][4])。

  5. 5. 多 Agent 协作:构建多角色智能体(如 Planner、Executor、Evaluator),通过图的形式串联,形成协作式智能系统 ([arXiv][7])。


六、小结

本文通过智能客服示例,演示了 LangGraph 的基本使用流程:

  • • 定义全局 State,存放上下文与中间结果

  • • 编写节点(Node)实现决策、工具调用、回复生成

  • • 用有向图(Graph)组织节点与条件边

  • • 编译并调用流程,结合 NetworkX 可视化

LangGraph 使得复杂、有状态的 AI 智能体开发变得模块化、可视化且易于维护,是构建企业级对话系统和多智能体工作流的利器。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值