基于深度学习计算机视觉的害虫种类及数量检测

该研究建立了一个远程害虫识别系统,结合24小时图像采集装置和基于深度学习的计算机视觉技术,实现了害虫种类识别和数量统计。通过图像预处理、特征提取和机器学习算法,该系统能有效帮助农业人员进行病虫害监测和预警,提升农作物的产量和质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整代码:https://download.csdn.net/download/qq_38735017/87379879

一、研究目的

研究的目的在于建立一套远程病虫害自动识别系统,有助于缓解农业植保人员和病虫害鉴定专家的人力资源紧张,有助于病虫害知识有限的农业人员进行及时的病虫害检测,并且,通过害虫种类数目的监测和信息收集,定期对昆虫数据进行整理和分析,建立病虫害爆发的规律模型,进而预测判断病虫害爆发的时间,及时通知农业植物保护人员和农户进行合理地科学地预防。提高农作物产量和质量。

二、研究内容及结论

(1) 设计实现了一套可适

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值