时间/空间复杂度(C语言)

目录

1.算法效率

1.1如何衡量一个算法的好坏

1.2算法的复杂度

 2.时间复杂度

 2.1时间复杂度的概念

2.2大O的渐进表示法

 2.3常见时间复杂度计算举例

3.空间复杂度

 4. 常见复杂度对比

 5.复杂度的oj练习

消失的数字:面试题 17.04. 消失的数字 - 力扣(LeetCode)

旋转数组OJ链接:189. 轮转数组 - 力扣(LeetCode)


1.算法效率

1.1如何衡量一个算法的好坏

如:

long long Fib(int N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

以上为斐波那契数列的递归实现方法非常简洁,但简介就一点好吗?

1.2算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即 时间复杂度和空间复杂度
时间复杂度主要衡量一个算法的 运行快慢 ,而空间复杂度主要衡量一个算法运行所需要的 额外空间 。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再 特别关注一个算法的空间复杂度

 2.时间复杂度

 2.1时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个 函数此为数学意义上的函数 ,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。
但是我们需要每个算法都上机测试吗?
是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的 执行次数 ,为算法 的时间复杂度。
即:找到某条基本语句与问题规模 N 之间的 数学表达式 ,就是算出了该算法的时间复杂度。
如:
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
int M = 10;
while (M--)
{
 ++count;
}
printf("%d\n", count);
}
Func1 执行的基本操作次数 :
  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数。

2.2大O的渐进表示法

O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果 影响不大 的项 简洁明了 的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的 最坏运行情况 ,所以数组中搜索数据时间复杂度为O(N)

 2.3常见时间复杂度计算举例

例1:

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}

	int N = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}
//计算时间复杂度
//F(N) = 2 * N + 10 ->O(N)
//时间复杂度为O(N),N后面的项“+10”影响不大,所有去掉,系数2的影响也不大,最终时间复杂度为O(N)

例2:

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}

	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}
//时间复杂度:O(M+N)  或  O(max(M,N))
//时间复杂度可以是有两个未知数
//如果:M远大于N,O(M)
//如果:N远大于M,O(N)

例3:

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)//循坏100
	{
		++count;
	}
	printf("%d\n", count);
}
//时间复杂度O(1)
//代表常数次,不代表1次

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。  

例1:

void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}
例2:
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}
实例答案及分析:
1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

 4. 常见复杂度对比

 5.复杂度的oj练习

消失的数字:面试题 17.04. 消失的数字 - 力扣(LeetCode)


//数组nums包含从0到n的所有整数,但其中缺了一个。
//请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?
//思路1:
int missingNumber(int* nums, int numsSize) {
    int N = numsSize;
    int ret = (0 + N) * (N + 1) / 2;
    for (int i = 0; i < numsSize; ++i)
    {
        ret -= nums[i];
    }
    return ret;
}
//思路2:

//思路2:异或(相同为0,相异为1),符合交换律
int missingNumber(int* nums, int numsSize) {
    int N = numsSize;
    int x = 0;
    for (int i = 0; i < numsSize; ++i)
    {
        x ^= nums[i];
    }

    for (int j = 0; j <= N; ++j)
    {
        x ^= j;
    }
    return x;
}

旋转数组OJ链接:189. 轮转数组 - 力扣(LeetCode)

感谢观看,再见

  • 49
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 35
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pzn)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值