NNDL 作业1

本文探讨了人工智能、机器学习、深度学习的概念及其关系,涉及符号主义与连接主义的区别,特征工程的重要性,表示学习的作用,以及端到端学习的概念。还介绍了独热码和word2vec在数据表示中的应用,以及神经网络的工作原理。
摘要由CSDN通过智能技术生成

1、人工智能

【定义】

John McCarthy提出了人工智能的定义: 人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。

【自己的理解】

人工智能就是让机器实现人的智能,其中包括感知、学习、认知等能力。让机器模拟人的智能,最终能够产生更加智能的行为,从而代替人类做一些任务。

2、机器学习

【定义】

机器学习(Machine Learning,ML)是指从有限的观测数据中学习(或“猜测”)出具有一般性的规律,并利用这些规律对未知数据进行预测的方法。

【自己的理解】

通过不断地训练机器,让机器从数据中不断学习不断积累经验,就像人类需要学习、积累经验一样,最终能够产生更好的模型,根据这些模型做到更准确的预测。

3、深度学习

【定义】

要构建具有一定“深度”的模型,并通过学习算法来让模型自动学习出好的特征表示(从底层特征,到中层特征,再到高层特征),从而最终提升预测模型的准确率.
深度学习是机器学习的一个子问题,其主要目的是从数据中自动学习到有效的特征表示.

【自己的理解】

从底层特征到中层特征,再到高层特征,不断进行非线性转换,让机器自动的从数据中学习到的表示可以替代人工设计的特征,就能够有效提升最终模型的性能。

要学习到一种好的高层语义表示(一般为分布式表示),通常需要从底层特征开始,经过多步非线性转换才能得到.连续多次的线性转换等价于一次线性转换. 深层结构的优点是可以增加特征的重用
性,从而指数级地增加表示能力

4、人工智能、机器学习、深度学习三者之间的关系

【定义】

机器学习是人工智能的一个重要分支,并逐渐成为推动人工智能发展的关键因素.
深度学习是机器学习的一个子问题,其主要目的是从数据中自动学习到有效的特征表示.

【自己的理解】

人工智能包含机器学习,机器学习包含机器学习在这里插入图片描述

5、人工智能的流派

【定义】

(1) 符号主义(Symbolism),又称逻辑主义、心理学派或计算机学派,是指通过分析人类智能的功能,然后用计算机来实现这些功能的一类方法.符号主义有两个基本假设:a)信息可以用符号来表示;b)符号可以通过显式的规则(比如逻辑运算)来操作.人类的认知过程可以看作符号操作过程.在人工智能的推理期和知识期,符号主义的方法比较盛行,并取得了大量的成果.
(2) 连接主义(Connectionism),又称仿生学派或生理学派,是认知科学领域中的一类信息处理的方法和理论.在认知科学领域,人类的认知过程可以看作一种信息处理过程.连接主义认为人类的认知过程是由大量简单神经元构成的神经网络中的信息处理过程,而不是符号运算.因此,连接主义模型的主要结构是由大量简单的信息处理单元组成的互联网络,具有非线性、分布式、并行化、局部性计算以及自适应性等特性.

【自己的理解】

(1)符号主义: 符号 逻辑 推理 知识
(2) 连接主义:神经元 神经网络 互联

6、特征工程

【定义】

特征工程是利用数据领域的相关知识来创建能够使机器学习算法达到最佳性能的特征的过程。

【自己的理解】

包括预处理、特征提取以及特征转换。在传统的机器学习中,可能产生的预测模型性能差不多,在对特征的提前准备中就显得很重要,特征处理得好可能就能够有效提升最终模型的性能。

7、表示学习

【定义】

一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就可以叫作表示学习(Representation Learning).

【自己的理解】

人为设计的特征学习可能不会提高模型性能,通过自动的从数据中学习怎么能够更好的表示,不是人为设定而是让计算机自己学,能够有效提升最终模型的性能。

8、贡献度分配

【定义】

一个系统中不同的组件或其参数对最终系统输出结果的贡献或影响。

【自己的理解】

从输入到输出过程中,中间需要经过很多步,每步对应相应组件和参数,确定每个组件及其参数对输出结果的贡献程度就是贡献度分配问题。

9、独热码

【定义】

有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的码制。

【自己的理解】

有些离散值的特征,且是无序的,需要将这些分类值转换为数值类型,有多少种结果,就有几位二进制,且只有一位为0。

10、word2vec

##【 定义】
用来产生词向量的相关模型

【自己的理解】

就是将单词转换为向量,可以用来实现结合上下文语义推测,也可判断语义相似度,需要用简单的神经网络模型训练。

11、神经网络

【定义】

一种模仿人脑神经系统的数学模型,称为人工神经网络,简称神经网络。

【自己的理解】

各个神经元(节点)连成网状结构, 包括有向和无向 。节点连接有不同的权重,到某个神经元的输入由不同权重在经过一定函数进行运算,再到一个激活函数得到的值去作为另外与之相连的神经元的输入。通过已知数据不断训练,调整参数,再调整超参数,使得损失最小,模型最优。

12、端到端学习

【定义】

是指在学习过程中不进行分模块和分阶段训练,直接优化任务的总目标。

【自己的理解】

不需要再人为的去处理数据,中间过程不用管,直接提供输入输出即可。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值