DP 动态规划 Problem H 1008 左上角到右下角

这是一个关于动态规划的问题,ID为1008,要求从左上角到右下角的二维方格阵列中,通过向下、向右或按格子中的数k倍移动,求路径上的数字之和的最大值。解题关键是使用dp数组,考虑每个格子的最大值为其自身值加上所有可行上一步的最大值。注意要考虑负数情况,防止WA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem H  ID:1008


简单题意:一个两维的方格阵列,从左上角走到右下角,每个格子里都有一个数字K ( |K|<100 ),每一步(从(x,y)走)有三种走法:向下走一个格(x+1,y)、向右走一个格(x,y+1)或者(x,y*k) ,k为大于等于2的整数,走过的数字将累加。问:到达右下角时最大值为多少?

解题思路形成过程:一个比较简答的dp题,先列遍历,再对每一行遍历,每一个格的最大值为当前格子原有的值加上所有的可能的上一步的最大值。             注意格子里值的范围,有可能为负数。

感想:WA了一次,没有考虑到格子里的值为负数的情况。总体来说比较简单。

代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int c,n,m;
int dp[21][1001];
int cmax(int _i,int _j)
{
    int _cmax=dp[_i][_j-1];
    for(int i=2;i<=_j;++i)
        if(_j%i==0)
            if(dp[_i][_j/i]>_cmax)
                _cmax=dp[_i][_j/i];
    if(dp[_i-1][_j]>_cmax)
        _cmax=dp[_i-1][_j];
    return _cmax;
}
int main()
{
    //freopen("1.txt","r",stdin);
    scanf("%d",&c);
    while(c--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<=m;++i)
            dp[0][i]=-9999999;
        for(int i=0;i<=n;++i)
            dp[i][0]=-9999999;
        for(int i=1;i<=n;++i)
            for(int j=1;j<=m;++j){
                scanf("%d",&dp[i][j]);
                if(!(i==1&&j==1))
                    dp[i][j]+=cmax(i,j);
            }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值