💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于多目标优化算法的 LCOE 电力成本的敏感性分析
摘要:在发电项目的财务评估中,平准化度电成本(LCOE)被用作比较发电技术的工具;然而,它的一个弱点是对用于计算的能源变量存量的敏感性。在这方面,每位作者在进行敏感性分析时采用不同的标准和方法,其中包括蒙特卡洛方法、马科维茨方法、条件风险价值(CVaR)、扩展的莱维模型等。在本研究中,提出了一种基于平准化度电成本计算的多目标优化技术的敏感性分析方法。对于定义为敏感性相关的每个变量,获得了帕累托前沿。该优化问题模型应用于所提出的案例研究中,以验证和分析结果。结果表明,帕累托前沿方法对于LCOE的敏感性分析非常有用,提供了一种额外的工具。
1980 年代和 1990 年代世界多个国家因垄断和寡头垄断模式的结构性失败而经历的能源危机,创造了电力市场自由化的全球趋势,以利用所提供的优势和好处通过竞争模型。在此背景下,发展中国家和发达国家政府对其立法进行了一系列改革,以实施扩大私人投资参与的战略,特别是在发电领域。政府和投资者必须掌握代表发电项目生命周期的成本信息,以及对此类项目的技术和财务评估的稳健指标的分析,其中考虑到某些变量变化的敏感性。高度不确定性,可能会影响项目的成本,从而影响其可行性。这些信息和指标有助于在发电园区的规划阶段做出决策。在学术文献中常用来比较不同类型的通信技术的指标中发电,确定产生 MWh 的成本或分析不同因素在其计算中的作用,有平准化电力成本 (LCOE),分析发电期间的成本总和发电源的使用寿命除以一段时间内产生的电能总和 [1] [2] [3]。该指标以美元/兆瓦时 [USD/