10 回归模型 --机器学习基础理论入门

10 回归模型 --机器学习基础理论入门

1.1 线性回归模型

在这里插入图片描述

梯度下降法

最小化损失函数常用方法就是梯度下降算法,如果要收敛到最小值附近,则函数须为凸函数。如果凹凸不平,不易得到整体最小值。在多元微分学中,梯度就是函数的导数方向。
在这里插入图片描述
沿着梯度方向可以保证能够快速达到极小值点。梯度方向就是函数在某个点的切线方向,即导数=0.

梯度下降算法推导过程

在这里插入图片描述

回归模型求解过程

在这里插入图片描述

三种线性回归模型

在这里插入图片描述

线性回归模型优缺点

优点
1) 形式简单,易于建模:同事蕴含机器学习中的基本思想(思想、策略、算法)
2) 可演变为其它模型:许多强大的非线性模型可以由此衍生而来
3) 可解释性好:模型中的权重系数可反映特征的重要性
缺点
1) 属于线性模型,模型拟合能力有限

1.2 本章小结

知识点回顾
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值