10 回归模型 --机器学习基础理论入门
1.1 线性回归模型
梯度下降法
最小化损失函数常用方法就是梯度下降算法,如果要收敛到最小值附近,则函数须为凸函数。如果凹凸不平,不易得到整体最小值。在多元微分学中,梯度就是函数的导数方向。
沿着梯度方向可以保证能够快速达到极小值点。梯度方向就是函数在某个点的切线方向,即导数=0.
梯度下降算法推导过程
回归模型求解过程
三种线性回归模型
线性回归模型优缺点
优点
1) 形式简单,易于建模:同事蕴含机器学习中的基本思想(思想、策略、算法)
2) 可演变为其它模型:许多强大的非线性模型可以由此衍生而来
3) 可解释性好:模型中的权重系数可反映特征的重要性
缺点
1) 属于线性模型,模型拟合能力有限
1.2 本章小结
知识点回顾