51nod 1065 最小正子段和

1065 最小正子段和
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注
N个整数组成的序列a[1],a[2],a[3],…,a[n],从中选出一个子序列(a[i],a[i+1],…a[j]),使这个子序列的和>0,并且这个和是所有和>0的子序列中最小的。
例如:4,-1,5,-2,-1,2,6,-2。-1,5,-2,-1,序列和为1,是最小的。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数
Output
输出最小正子段和。
Input示例
8
4
-1
5
-2
-1
2
6
-2
Output示例
1

题解:

将前n项和求出来并排序,然后比较相邻两项其位置关系,如果可以组成序列,则说明其可能是所要求结果,然后从所有可能是结果的结果中取出最小值即可。

如果ABC为排序后的结果,那么当A和B不能组成序列,而A和C可以组成序列时,那么B和C一定可以组成序列,并且BC一定会比AC更优。

参考逐梦者

代码:

#include <bits/stdc++.h>
using namespace std;

int n;
const int maxn = 50005;

struct node
{
    long long sum;
    int pos;
}Node[maxn];

bool cmp(node &a,node &b)
{
    if(a.sum == b.sum)
    {
        return a.pos > b.pos;
    }
    return a.sum < b.sum;
}

int main()
{
    int i,flag;
    long long sum = 0,temp,res = 0;
    scanf("%d",&n);

    Node[0].pos=0;
    Node[0].sum=0;

    for(i=1;i<=n;i++)
    {
        scanf("%lld", &temp);
        sum += temp;

        Node[i].pos = i;
        Node[i].sum = sum;
    }
    sort(Node,Node+n+1,cmp);

    flag = 0;
    for(i=1;i<=n;i++)
    {
         if (Node[i].pos - Node[i - 1].pos > 0 && Node[i].sum - Node[i - 1].sum > 0)
        {
            if (flag == 0)
            {
                flag = 1;
                res = Node[i].sum - Node[i - 1].sum;
            }
            else
            {
                if (Node[i].sum - Node[i - 1].sum < res)
                {
                    res = Node[i].sum - Node[i - 1].sum;
                }
            }
        }
    }

    cout<<res<<endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值