1065 最小正子段和
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注
N个整数组成的序列a[1],a[2],a[3],…,a[n],从中选出一个子序列(a[i],a[i+1],…a[j]),使这个子序列的和>0,并且这个和是所有和>0的子序列中最小的。
例如:4,-1,5,-2,-1,2,6,-2。-1,5,-2,-1,序列和为1,是最小的。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数
Output
输出最小正子段和。
Input示例
8
4
-1
5
-2
-1
2
6
-2
Output示例
1
题解:
将前n项和求出来并排序,然后比较相邻两项其位置关系,如果可以组成序列,则说明其可能是所要求结果,然后从所有可能是结果的结果中取出最小值即可。
如果ABC为排序后的结果,那么当A和B不能组成序列,而A和C可以组成序列时,那么B和C一定可以组成序列,并且BC一定会比AC更优。
参考逐梦者
代码:
#include <bits/stdc++.h>
using namespace std;
int n;
const int maxn = 50005;
struct node
{
long long sum;
int pos;
}Node[maxn];
bool cmp(node &a,node &b)
{
if(a.sum == b.sum)
{
return a.pos > b.pos;
}
return a.sum < b.sum;
}
int main()
{
int i,flag;
long long sum = 0,temp,res = 0;
scanf("%d",&n);
Node[0].pos=0;
Node[0].sum=0;
for(i=1;i<=n;i++)
{
scanf("%lld", &temp);
sum += temp;
Node[i].pos = i;
Node[i].sum = sum;
}
sort(Node,Node+n+1,cmp);
flag = 0;
for(i=1;i<=n;i++)
{
if (Node[i].pos - Node[i - 1].pos > 0 && Node[i].sum - Node[i - 1].sum > 0)
{
if (flag == 0)
{
flag = 1;
res = Node[i].sum - Node[i - 1].sum;
}
else
{
if (Node[i].sum - Node[i - 1].sum < res)
{
res = Node[i].sum - Node[i - 1].sum;
}
}
}
}
cout<<res<<endl;
return 0;
}