大概就是树形dp
设
f[i][j][0/1][0/1]
f
[
i
]
[
j
]
[
0
/
1
]
[
0
/
1
]
,表示
i
i
的子树里选了个,
i
i
有没有选,是否被覆盖
然后类似卷积的合并,就能算出答案
一个显然的性质,节点i的次数界为
min(size[i],k)
m
i
n
(
s
i
z
e
[
i
]
,
k
)
根据某科学的理论
若合并的两棵树 size s i z e 都大于等于k,则合并次数不超过 n/k n / k
若只有一棵的 siz s i z 大于等于k,相当于小的那棵树的每个点都用k的时间,使其次数界变为k
若两棵
siz
s
i
z
都小于k,设一棵为
a
a
相当于另一棵树的每个点用的时间使其所在树的次数界扩大a
所以就是 O(nk) O ( n k ) 的
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))
typedef long long LL;
void read(int &hy)
{
hy=0;
char cc=getchar();
while(cc<'0'||cc>'9')
cc=getchar();
while(cc>='0'&&cc<='9')
{
hy=(hy<<3)+(hy<<1)+cc-'0';
cc=getchar();
}
}
const int N=100200,p=1e9+7;
int n,k;
int head[N],nex[N<<1],to[N<<1],cnt;
int siz[N];
int f[N][102][2][2],g[102][2][2];
void add(int u,int v)
{
to[++cnt]=v;
nex[cnt]=head[u];
head[u]=cnt;
}
void B(int &x,int a,int b)
{
x=(x+(LL)a*b%p)%p;
}
void dfs(int x)
{
siz[x]=1;
f[x][0][0][0]=f[x][1][1][0]=1;
for(int h=head[x];h;h=nex[h])
if(!siz[to[h]])
{
int v=to[h];
dfs(to[h]);
for(int i=0;i<=min(siz[x]+siz[v],k);i++)
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++)
g[i][a][b]=0;
for(int i=0;i<=min(siz[x],k);i++)
for(int j=0;j<=min(k-i,siz[v]);j++)
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++)
for(int c=0;c<=1;c++)
for(int d=0;d<=1;d++)
if(a+d>0)
B(g[i+j][a][(b|c)],f[x][i][a][b],f[v][j][c][d]);
siz[x]+=siz[to[h]];
for(int i=0;i<=min(siz[x],k);i++)
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++)
f[x][i][a][b]=g[i][a][b];
}
}
int main()
{
cin>>n>>k;
for(int i=1;i<n;i++)
{
int u,v;
read(u);
read(v);
add(u,v);
add(v,u);
}
dfs(1);
cout<<(f[1][k][0][1]+f[1][k][1][1])%p<<endl;
return 0;
}