LibreOJ #2546.「JSOI2018」潜入行动 树形dp

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33229466/article/details/80337886

题意

有一棵n个节点的树和k个摄像头。在某个节点放置摄像头可以观测到所有和这个点有边相连的点,但不包括它自己,且每个点最多放置一个摄像头。问有多少种放置方案使得所有点都被观测到。
n105,kmin(n,200)

分析

不难想到一个O(nk2)的dp,设fi,j,0/1,0/1表示以i为根的子树放了j个摄像头,第i个点是否被覆盖,第i个点是否放置摄像头的方案。
转移就是一个合并背包。
但如果我们在转移的时候,在for的终止条件中加入size的优化,复杂度就是O(nk)的了。
具体的证明就是,若合并的两棵树大小都不小于k,则最多只有O(n/k)次合并,复杂度是O(nk)
若合并的两棵树一棵不小于k,另一棵小于k,则合并完后第二棵树会并到第一棵里面,所以复杂度也是O(nk)
若合并的两棵树都小于k,则考虑把复杂度摊到每个节点上,这样每个节点摊到的复杂度不超过O(k),复杂度也是O(nk)的。
那么总的复杂度就是O(nk)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

typedef long long LL;

const int N=100005;
const int MOD=1000000007;

int n,m,cnt,last[N],size[N];
int f[N][105][2][2],tmp[105][2][2];
struct edge{int to,next;}e[N*2];

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}

void dp(int x,int fa)
{
    f[x][0][0][0]=f[x][1][0][1]=1;size[x]=1;
    for (int i=last[x];i;i=e[i].next)
    {
        int to=e[i].to;
        if (to==fa) continue;
        dp(to,x);
        for (int j=0;j<=m;j++)
            tmp[j][0][0]=tmp[j][0][1]=tmp[j][1][0]=tmp[j][1][1]=0;
        for (int j=0;j<=std::min(m,size[x]);j++)
            for (int k=0;k+j<=m&&k<=std::min(m,size[to]);k++)
            {
                tmp[j+k][0][0]+=(LL)f[x][j][0][0]*f[to][k][1][0]%MOD;
                tmp[j+k][0][0]-=tmp[j+k][0][0]>=MOD?MOD:0;
                tmp[j+k][0][1]+=(LL)f[x][j][0][1]*(f[to][k][0][0]+f[to][k][1][0])%MOD;
                tmp[j+k][0][1]-=tmp[j+k][0][1]>=MOD?MOD:0;
                tmp[j+k][1][0]+=((LL)f[x][j][1][0]*(f[to][k][1][0]+f[to][k][1][1])+(LL)f[x][j][0][0]*f[to][k][1][1])%MOD;
                tmp[j+k][1][0]-=tmp[j+k][1][0]>=MOD?MOD:0;
                tmp[j+k][1][1]+=((LL)f[x][j][1][1]*((LL)f[to][k][0][0]+(LL)f[to][k][0][1]+(LL)f[to][k][1][0]+(LL)f[to][k][1][1])+(LL)f[x][j][0][1]*(f[to][k][1][1]+f[to][k][0][1]))%MOD;
                tmp[j+k][1][1]-=tmp[j+k][1][1]>=MOD?MOD:0;
            }
        size[x]+=size[to];
        for (int j=0;j<=std::min(size[x],m);j++)
        {
            f[x][j][0][0]=tmp[j][0][0];
            f[x][j][1][0]=tmp[j][1][0];
            f[x][j][0][1]=tmp[j][0][1];
            f[x][j][1][1]=tmp[j][1][1];
        }
    }
}

int main() 
{
    n=read();m=read();
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read();
        addedge(x,y);
    }
    dp(1,0);
    printf("%d",(f[1][m][1][0]+f[1][m][1][1])%MOD);
    return 0;
}
阅读更多
想对作者说点什么?
相关热词

博主推荐

换一批

没有更多推荐了,返回首页