大家好!我是小编!
今天给大家详细说说人工智能如何入门,以及这些日子我自己整理了一些学习资料,并免费分享出来,希望对大家的学习能有所帮助。
一:学习途径
在我学习人工智能的过程中,主要有以下两个途径:
- 首先是B站。B站是我们学习的一个非常重要的网站,里面有各种各样的学习知识,关于人工智能也是有很多最新前沿技术教程。
- 第二是书籍。视频的讲解难免会不全面,很多时候我们需要翻阅书籍对知识进行查漏补缺、透彻理解。本文提及所有书籍在文末可免费获取电子版。
二:AI知识大纲

学AI知识大体可以分为5个模块,接下来我会依次介绍每个模块的学习路径,最后给大家推荐几个我入门时做过的项目,帮助大家快速入门人工智能。
网络资源推荐


在这里给大家推荐两本机器学习与深度学习入门必读书籍,很多小伙伴刚学习人工智能的时候都会学习这两本书籍,所以这也称之为AI必读圣经。
三:数学基础
很多同学看到数学就头疼,其实模型通用的基本数学原理并不难,难的公式在之后的模型中遇见时再逐个击破即可。
切记前期不要深陷到数学知识中去深挖!!
高数
首先大家不要惧怕数学。在遇到我们不会的数学公式时,我们要更多的思考这个公式能解决什么问题,而不是一直纠结公式的推导与计算。
比如梯度下降和反向传播的根本原理就是求导,全局最优解就是极值点,所以最优解一定在导数的某一个拐点处,类似的很多知识都是高中就学过的。
线代
在深度学习中,线代最重要的应用就是高维数据相乘运算,可以大大提升运算速度。
首先要明白矩阵各维度所代表的意义
其次清楚矩阵的运算规则
概率论
概率论的知识在AI体系中看似不那么重要,但却无处不在。从数据预处理、建模、模型参数初始化及归一化,到最后的结果分析都与概率论息息相关。
常用指标很多是大家耳熟能详的,比如均值、方差。如果你之前没有很强的概率论功底,建议你掌握常用知识后,在实际中遇到不懂的问题时要养成查阅的习惯。这部分知识不会太难,但是对理解模型与过程十分的重要:
比如为什么树模型一般不需要进行数据归一化?
而逻辑回归、神经网络、PCA中就必须进行数据归一化?
网络资源推荐

这里推荐的是唐宇迪著作的人工智能数学基础。这里把深奥的数学方法解释得通俗易懂,非常精彩,很多模型原理都可以在其中找到你想要的回答。
未完待续
上述提到的重点内容日后会继续和大家分享,文字难以表达的也会以视频的方式和大家见面。
我目前的工作是人工智能方向欢迎大家与我交流。同时,本文提到的书籍及人工智能路线图,加我公众号【AI技术星球】,后台回复【3】均可免费获取。

人工智能入门指南:从学习资源到数学基础
2472

被折叠的 条评论
为什么被折叠?



