随机变量及其分布

一、定义

设E是随机试验,它的样本空间是S={e}.如果对于每一个e∈S,有一个实数X(e)与之对应,这样就得到一个定义在S上的单值实值函数X(e),称X(e)为随机变量.可简写为随机变量X.

1)随机变量与普通的函数不同

2)随机变量的取值具有一定的概率规律

二、分类

1)离散型:随机变量所取的可能值是有限多个无限可列个

2)连续型:随机变量所取的可能值可以连续地充满某个区间

比如“灯泡的寿命”,X的取值范围为[0,+∞].

一)离散型随机变量的分布律

1.两点分布,b(1,p)

        设随机变量X只可能取0与1两个值,它的分布律为

X01
P1-p

p

                            或记为   P(X = k) = {(1-p)}^{1-k}p^k,k = 0,1   

则称X服从(0-1)分布或两点分布,一般用符号X~b(1,p)表示.

2.伯努利试验、二项分布

试验是相互独立的

n重伯努利试验实验

        设试验E只有两个可能结果,A及非A,则称E为伯努利试验.

如果独立重复进行n次

                            P(X = k) =\binom{n}{k}p^kq^{n-k},k = 0,1,2,...,n.

称随机变量X服从参数为n,p的二项分布,并记为X~b(n,p)

        特别,当n =1 时二项分布化为

                        ​​​​​​​        ​​​​​​P(X = k) = {(1-p)}^{1-k}p^k,k = 0,1

这是(0-1)分布.

3.泊松分布 Π(\lambda

当二项分布X~b(n,p)中n>10,p<0.1时,则逼近泊松分布

        设随机变量X所有可能取的值为0,1,2,...,而取各个值的概率为

                                    P(X=k) = \frac{\lambda ^{k}e^{-\lambda }}{k!},k = 0,1,2,...,

其中\lambda>0是常数,则称X服从参数为\lambda的泊松分布,记为X~Π(\lambda).

ps:\lambda = np

二)连续型随机变量及其概率密度

                                                        F(x) =\int_{-\infty}^xf(t)dt

F(x)是分布函数,f(x)是概率密度.

1.均匀分布

设连续型随机变量X具有概率密度

                                                 f(x) = \left\{\begin{matrix} \frac{1}{b-a},a<x<b,\\ 0,else, \end{matrix}\right.

则称X在区间(a,b)区间上服从均匀分布,记为X~U(a,b).

分布函数为

                                               f(x) = \left\{\begin{matrix} 0,x<a,\\\frac{x-a}{b-a},a\leq x<b,\\ 1,x\geq b, \end{matrix}\right.

2.指数分布

设连续型随机变量X具有概率密度

                                              f(x) = \left\{\begin{matrix} \frac{1}{\Theta }e^{-\frac{x}{\Theta }},0<x,\\ 0,x\leq 0, \end{matrix}\right.

其中\Theta>0为常数,则称X服从参数为\Theta的指数分布.

分布函数为

                                             f(x) = \left\{\begin{matrix} 1-\frac{1}{\Theta }e^{-\frac{x}{\Theta }},0<x,\\ 0,x\leq 0, \end{matrix}\right.

3.正态分布(或高斯分布)

设连续型随机变量X的概率密度为

                                            F(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infty<x<+\infty

其中\mu\sigma\sigma>0)为常数,则则称X服从参数为\mu\sigma的正态分布或高斯分布.记为X~N(\mu,\sigma ^2).

1)曲线关于x =\mu对称;

2)当 x = \mu,f(x)取得最大值\frac{1}{\sqrt{2\pi}\sigma}

3)当x趋于无穷时,f(x)趋于0;

4)曲线在x =\mu±\sigma处有拐点;

5)曲线以x轴为渐近线. 

分布函数为

                                               F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^xe^{-\frac{(t-\mu)^2}{2\sigma^2}}dt

三、分布函数

定义:设X是一个随机变量,x是任意实数,函数F(x) = P{X<=k}称为X的分布函数

离散型随机变量分布律与分布函数的关系

分布律: p_{k} = P \{X = x_{k}\}

分布函数:F(x) = P\{X\leq x\} = \sum_{x_{k} \leq x}{p_{k}}

离散型:阶梯型

连续性:连续

    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值