一、定义
设E是随机试验,它的样本空间是S={e}.如果对于每一个e∈S,有一个实数X(e)与之对应,这样就得到一个定义在S上的单值实值函数X(e),称X(e)为随机变量.可简写为随机变量X.
1)随机变量与普通的函数不同
2)随机变量的取值具有一定的概率规律
二、分类
1)离散型:随机变量所取的可能值是有限多个或无限可列个
2)连续型:随机变量所取的可能值可以连续地充满某个区间
比如“灯泡的寿命”,X的取值范围为[0,+∞].
一)离散型随机变量的分布律
1.两点分布,b(1,p)
设随机变量X只可能取0与1两个值,它的分布律为
X | 0 | 1 |
P | 1-p | p |
或记为
则称X服从(0-1)分布或两点分布,一般用符号X~b(1,p)表示.
2.伯努利试验、二项分布
试验是相互独立的
n重伯努利试验实验
设试验E只有两个可能结果,A及非A,则称E为伯努利试验.
如果独立重复进行n次
称随机变量X服从参数为n,p的二项分布,并记为X~b(n,p)
特别,当n =1 时二项分布化为
这是(0-1)分布.
3.泊松分布 Π()
当二项分布X~b(n,p)中n>10,p<0.1时,则逼近泊松分布
设随机变量X所有可能取的值为0,1,2,...,而取各个值的概率为
其中>0是常数,则称X服从参数为的泊松分布,记为X~Π().
ps: = np
二)连续型随机变量及其概率密度
F(x)是分布函数,f(x)是概率密度.
1.均匀分布
设连续型随机变量X具有概率密度
则称X在区间(a,b)区间上服从均匀分布,记为X~U(a,b).
分布函数为
2.指数分布
设连续型随机变量X具有概率密度
其中>0为常数,则称X服从参数为的指数分布.
分布函数为
3.正态分布(或高斯分布)
设连续型随机变量X的概率密度为
其中,(>0)为常数,则则称X服从参数为,的正态分布或高斯分布.记为X~N(,).
1)曲线关于x =对称;
2)当 x = ,f(x)取得最大值;
3)当x趋于无穷时,f(x)趋于0;
4)曲线在x =±处有拐点;
5)曲线以x轴为渐近线.
分布函数为
三、分布函数
定义:设X是一个随机变量,x是任意实数,函数F(x) = P{X<=k}称为X的分布函数
离散型随机变量分布律与分布函数的关系
分布律:
分布函数:
离散型:阶梯型
连续性:连续