概率论与数理统计教程(二)-随机变量及其分布01:随机变量及其分布

为了进行定量的数学处理, 必须把随机现象的结果数量化.
这就是引进随机变量的原因.随机变量概念的引进使得对随机现象的处理更简单与直接,
也更统一而有力.本章我们将主要讨论一维随机变量及其分布.
§ 2.1 随机变量及其分布
在第一章中我们曾提及随机变量,在那里我们把
"用来表示随机现象结果的变量"称为随机变量, 其中"表示"一词的含义是什么?
这是要进一步探讨的问题.
2.1.1 随机变量的概念
在随机现象中有很多样本点本身就是用数量表示的,
由于样本点出现的随机性,其数量呈现为随机变量, 譬如
- 郑一颗骰子,出现的点数 X X X 是一个随机变量.
- 每天进人某超市的顾客数 Y Y Y, 顾客购买商品的件数 U U U,
顾客排队等候付款的时间 V V V, 这里 Y , U , V Y, U, V Y,U,V 是三个不同的随机变量.
- 电视机的寿命 T T T 是一个随机变量.
- 测量的误差 ε \varepsilon ε 是一个随机变量.
在随机现象中还有不少样本点本身不是数,
这时可根据研究需要设置随机变量,臂如
- 检查一个产品, 只考察其合格与否, 则其样本空间为 Ω = { \Omega=\{ Ω={ 合格品,
不合格品 } \} }.这时可设置一个随机变量 X X X 如下:


合格品    $\longrightarrow$

不合格品 ⟶ \longrightarrow
点 0
的取值


在此 X X X 就是 “检查一个产品中不合格品数”, 它仅可能取值 0 与 1.
若此种产品的不合格品率为 p p p, 则 X X X 取各种值及其概率可列表如下:
X X X 0 1


P P P 1 − p 1-p 1p p p p
- 检查三个产品, 则有 8 个样本点, 若记 X X X 为 “三个产品中的不合格品数”,
X X X的取值与样本点之间有如下对应关系:
样本点 X X X 的取值


ω 1 = ( 0 , 0 , 0 ) \omega_{1}=(0,0,0) ω1=(0,0,0) ⟶ \longrightarrow 0
ω 2 = ( 1 , 0 , 0 ) \omega_{2}=(1,0,0) ω2=(1,0,0) ⟶ \longrightarrow 1
ω 3 = ( 0 , 1 , 0 ) \omega_{3}=(0,1,0) ω3=(0,1,0) ⟶ \longrightarrow 1
ω 4 = ( 0 , 0 , 1 ) \omega_{4}=(0,0,1) ω4=(0,0,1) ⟶ \longrightarrow 1
ω 5 = ( 0 , 1 , 1 ) \omega_{5}=(0,1,1) ω5=(0,1,1) ⟶ \longrightarrow 2
ω 6 = ( 1 , 0 , 1 ) \omega_{6}=(1,0,1) ω6=(1,0,1) ⟶ \longrightarrow 2
ω 9 = ( 1 , 1 , 0 ) \omega_{9}=(1,1,0) ω9=(1,1,0) ⟶ \longrightarrow 2
ω 8 = ( 1 , 1 , 1 ) \omega_{8}=(1,1,1) ω8=(1,1,1) ⟶ \longrightarrow 3
这样 X X X 取各种值就是如下的互不相容的事件:
{ X = 0 } = { ω 1 } , { X = 1 } = { ω 2 , ω 3 , ω 4 } , { X = 2 } = { ω 5 , ω 6 , ω 7 } , { X = 3 } = { ω 8 } . \begin{array}{ll} \{X=0\}=\left\{\omega_{1}\right\}, & \{X=1\}=\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}, \\ \{X=2\}=\left\{\omega_{5}, \omega_{6}, \omega_{7}\right\}, & \{X=3\}=\left\{\omega_{8}\right\} . \end{array} { X=0}={ ω1},{ X=2}={ ω5,ω6,ω7},{ X=1}={ ω2,ω3,ω4},{ X=3}={ ω8}.

若此种产品的不合格品率为 p p p, 则 X X X 取各种值的概率可列表如下:
X X X 0 1 2 3


P P P ( 1 − p ) 3 (1-p)^{3} (1p)3 3 p ( 1 − p ) 2 3 p(1-p)^{2} 3p(1p)2 3 p 2 ( 1 − p ) 3 p^{2}(1-p) 3p2(1p) p 3 p^{3} p3
下面我们给出随机变量的一般定义.
定义 2.1.1 定义在样本空间 Ω \Omega Ω 上的实值函数 X = X ( ω ) X=X(\omega) X=X(ω)
称为随机变量, 常用大写字母 X , Y , Z X, Y, Z X,Y,Z 等表示随机变量, 其取值用小写字母
x , y , z x, y, z x,y,z 等表示.
假如一个随机变量仅可能取有限个或可列个值, 则称其为离散随机变量.
假如一个随机变量的可能取值充满数轴上的一个区间 ( a , b ) (a, b) (a,b),
则称其为连续随机变量, 其中 a a a可以是 − ∞ , b -\infty, b ,b 可以是 ∞ \infty .
这个定义表明: 随机变量 X X X 是样本点 ω \omega ω 的一个函数,
这个函数可以是不同样本点对应不同的实数, 也允许多个样本点对应同一个实数.
这个函数的自变量 (样本点) 可以是数, 也可以不是数,但因变量一定是实数.
与微积分中的变量不同, 概率论中的随机变量 X X X 是一种
“随机取值的变量且伴随一个分布”. 以离散随机变量为例, 我们不仅要知道 X X X
可能取哪些值, 而且还要知道它取这些值的概率各是多少, 这就需要分布的概念.
有没有分布是区分一般变量与随机变量的主要标志.
2.1.2 随机变量的分布函数
随机变量 X X X 是样本点 ω \omega ω 的一个实值函数, 若 B B B
是某些实数组成的集合, 即 B ⊂ R B \subset \mathbf{R} BR, R \mathbf{R} R
表示实数集, 则 { X ∈ B } \{X \in B\} { XB} 表示如下的随机事件
{ ω : X ( ω ) ∈ B } ⊂ Ω . \{\omega: X(\omega) \in B\} \subset \Omega . { ω:X(ω)B}Ω.
特别, 用等号或不等号把随机变量 X X X 与某些实数连接起来, 用来表示事件. 如
{ X ⩽ a } \{X \leqslant a\} { Xa} { X > b } \{X>b\} { X>b} { a < X < b } \{a<X<b\} { a<X<b} 都是随机事件. 具体有
- 记 X X X 表示掷一颗骰子出现的点数, 则 X X X 的可能取值为
1 , 2 , ⋯   , 6 1,2, \cdots, 6 1,2,,6. 这是一个离散随机变量. 事件 A = A= A= "点数小于等于 3 ",
可以表示为 A = { X ⩽ 3 } A=\{X \leqslant 3\} A={ X3}.
- 记 Y Y Y 表示一天内到达某商场的顾客数, 则 Y Y Y 的可能取值为
0 , 1 , 2 , ⋯   , n , ⋯ 0,1,2, \cdots, n, \cdots 0,1,2,,n,. 这也是一个离散随机变量. 事件 B = B= B= “至少来
1000 位顾客”, 可以表示为 B = { Y ⩾ 1000 } B=\{Y \geqslant 1000\} B={ Y1000}.
- 记 T T T 表示某种电器产品的使用寿命, 则 T T T 的可能取值充满区间
[ 0 , ∞ ) [0, \infty) [0,). 这是一个连续随机变量. 事件 C = C= C= “使用寿命在 40000 至
50000 小时之间”, 可以表示为 C = C= C=
{ 40000 ⩽ T ⩽ 50000 } \{40000 \leqslant T \leqslant 50000\} { 40000T50000}.
为了掌握 X X X 的统计规律性, 我们只要掌握 X X X 取各种值的概率. 由于
{ a < X ⩽ b } = { X ⩽ b } − { X ⩽ a } , { X > c } = Ω − { X ⩽ c } , \begin{array}{l} \{a<X \leqslant b\}=\{X \leqslant b\}-\{X \leqslant a\}, \\ \{X>c\}=\Omega-\{X \leqslant c\}, \end{array} { a<Xb}={ Xb}{ Xa},{ X>c}=Ω{ Xc},

因此只要对任意实数 x x x, 知道了事件 { X ⩽ x } \{X \leqslant x\} { Xx} 的概率就够了,
这个概率具有累积特性, 常用 F F F 表示. 另外这个概率与 x x x 有关, 不同的
x x x, 此累积概率的值也不同, 为此记
F ( x ) = P ( X ⩽ x ) , F(x)=P(X \leqslant x), F(x)=P(Xx),
于是 F ( x ) F(x) F(x) 对所有 x ∈ ( − ∞ , ∞ ) x \in(-\infty, \infty) x(,) 都有定义, 因而 F ( x ) F(x) F(x)
是定义在 ( − ∞ , ∞ ) (-\infty, \infty) (,) 上、取值于 [ 0 [0 [0, 1 ] 1] 1] 的一个函数.
这就是我们下面要引人的分布函数.
定义 2.1.2 设 X X X 是一个随机变量, 对任意实数 x x x, 称
F ( x ) = P ( X ⩽ x ) F(x)=P(X \leqslant x) F(x)=P(Xx)
为随机变量 X X X 的分布函数. 且称 X X X 服从 F ( x ) F(x) F(x), 记为 X ∼ F ( x ) X \sim F(x) XF(x).
有时也可用 F X ( x ) F_{X}(x) FX(x) 以表明是 X X X 的分布函数 (把 X X X 写成 F F F 的下标).
例 2.1.1 向半径为 r r r 的圆内随机抛一点, 求此点到圆心之距离 X X X
的分布函数 F ( x ) F(x) F(x), 并求 P ( X > 2 r 3 ) P\left(X>\frac{2 r}{3}\right) P(X>32r).
解 事件 " X ⩽ x X \leqslant x Xx " 表示所抛之点落在半径为
x ( 0 ⩽ x ⩽ r ) x(0 \leqslant x \leqslant r) x(0xr) 的圆内, 故由几何概率知
F ( x ) = P ( X ⩽ x ) = π x 2 π r 2 = ( x r ) 2 , F(x)=P(X \leqslant x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2}, F(x)=P(Xx)=πr2πx2=(rx)2,
而当 x < 0 x<0 x<0 时,有 F ( x ) = 0 F(x)=0 F(x)=0; 当 x > r x>r x>r 时, 有 F ( x ) = 1 F(x)=1 F(x)=1.
从而
P ( X > 2 r 3 ) = 1 − P ( X ⩽ 2 r 3 ) = 1 − F ( 2 r 3 ) = 1 − ( 2 3 ) 2 = 5 9 . P\left(X>\frac{2 r}{3}\right)=1-P\left(X \leqslant \frac{2 r}{3}\right)=1-F\left(\frac{2 r}{3}\right)=1-\left(\frac{2}{3}\right)^{2}=\frac{5}{9} . P(X>32r)=1P(X32r)=1F(32r)=1(32)2=95.
从分布函数的定义可见, 任一随机变量 X X X (离散的或连续的)
都有一个分布函数.有了分布函数, 就可据此算得与随机变量 X X X
有关事件的概率. 下面先证明分布函数的三个基本性质.
定理 2.1.1 任一分布函数 F ( x ) F(x) F(x) 都具有如下三条基本性质:
(1) 单调性 F ( x ) F(x) F(x) 是定义在整个实数轴 ( − ∞ , ∞ ) (-\infty, \infty) (,)
上的单调非减函数, 即对任意的 x 1 < x 2 x_{1}<x_{2} x1<x2, 有
F ( x 1 ) ⩽ F ( x 2 ) F\left(x_{1}\right) \leqslant F\left(x_{2}\right) F(x1)F(x2).
(2) 有界性 对任意的 x x x, 有 0 ⩽ F ( x ) ⩽ 1 0 \leqslant F(x) \leqslant 1 0F(x)1, 且
F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 , F(-\infty)=\lim \limits_{x \rightarrow-\infty} F(x)=0, F()=xlimF(x)=0,
F ( ∞ ) = lim ⁡ x → ∞ F ( x ) = 1. F(\infty)=\lim \limits_{x \rightarrow \infty} F(x)=1 . F()=xlimF(x)=1.
(3) 右连续性 F ( x ) F(x) F(x) x x x 的右连续函数, 即对任意的 x 0 x_{0} x0, 有
lim ⁡ x → x 0 + 0 F ( x ) = F ( x 0 ) , \lim \limits_{x \rightarrow x_{0}+0} F(x)=F\left(x_{0}\right), xx0+0limF(x)=F(x0),

F ( x 0 + 0 ) = F ( x 0 ) . F\left(x_{0}+0\right)=F\left(x_{0}\right) . F(x0+0)=F(x0).
证明 (1) 是显然的, 下证 (2). 由于 F ( x ) F(x) F(x) 是事件 { X ⩽ x } \{X \leqslant x\} { Xx}
的概率, 所以 0 ⩽ 0 \leqslant 0 F ( x ) ⩽ 1 F(x) \leqslant 1 F(x)1. 由 F ( x ) F(x) F(x) 的单调性知,
对任意整数 m m m n n n, 有
lim ⁡ x → − ∞ F ( x ) = lim ⁡ m → − ∞ F ( m ) , lim ⁡ x → ∞ F ( x ) = lim ⁡ n → ∞ F ( n ) \lim \limits_{x \rightarrow-\infty} F(x)=\lim \limits_{m \rightarrow-\infty} F(m), \quad \lim \limits_{x \rightarrow \infty} F(x)=\lim \limits_{n \rightarrow \infty} F(n) xlimF(x)=mlimF(m),xlimF(x)=nlimF(n)
都存在. 又由概率的可列可加性得
1 = P ( − ∞ < X < ∞ ) = P ( ⋃ i = − ∞ ∞ { i − 1 < X ⩽ i } )

  • 17
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值