概率分布——均匀分布——离散&连续

均匀分布(Uniform Distribution)是概率论和统计学中的一种概率分布,其中有限数量的结果每个都有相同的成功概率。在离散情况下,它指的是所有可能的离散值出现的概率都相等;而在连续情况下,则指在某个区间内所有点出现的概率密度相同。

离散均匀分布

如果随机变量 X X X可以取 n n n个不同的值,且每个值出现的概率都是 1 / n 1/n 1/n,那么我们说 X X X服从离散均匀分布。例如,掷一个公平的六面骰子,每个面朝上的概率都是 1 / 6 1/6 1/6

连续均匀分布

对于连续随机变量 X X X,如果它在区间 [ a , b ] [a, b] [a,b]上的任何一点取值的概率密度函数(PDF)是常数 f ( x ) = 1 b − a f(x) = \frac{1}{b-a} f(x)=ba1,则称 X X X在此区间上服从连续均匀分布。这表示 X X X落在该区间内的任何一个子区间的概率只与这个子区间的长度成正比,而与其位置无关。

均匀分布的性质

  • 期望值:对于连续均匀分布 [ a , b ] [a, b] [a,b],其期望值(均值)为 μ = a + b 2 \mu = \frac{a + b}{2} μ=2a+b
  • 方差:其方差为 σ 2 = ( b − a ) 2 12 \sigma^2 = \frac{(b - a)^2}{12} σ2=12(ba)2
  • 累积分布函数(CDF):对于连续情况,在 [ a , b ] [a, b] [a,b]区间内, P ( X ≤ x ) P(X \leq x) P(Xx)是线性增加的,从 0 0 0增加到 1 1 1

在这里插入图片描述
在这里插入图片描述

均匀分布在模拟、随机数生成以及作为其他更复杂分布的基础等方面有着广泛的应用。

在Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量的概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有一个数据框df,其中包含了不合格品数和概率 mymean = sum(df['不合格品数'] * df['概率']) # 计算均值 myvar = sum((df['不合格品数'] - mymean) ** 2 * df['概率']) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量的概率分布的一些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量的概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值