均匀分布(Uniform Distribution)是概率论和统计学中的一种概率分布,其中有限数量的结果每个都有相同的成功概率。在离散情况下,它指的是所有可能的离散值出现的概率都相等;而在连续情况下,则指在某个区间内所有点出现的概率密度相同。
离散均匀分布
如果随机变量 X X X可以取 n n n个不同的值,且每个值出现的概率都是 1 / n 1/n 1/n,那么我们说 X X X服从离散均匀分布。例如,掷一个公平的六面骰子,每个面朝上的概率都是 1 / 6 1/6 1/6。
连续均匀分布
对于连续随机变量 X X X,如果它在区间 [ a , b ] [a, b] [a,b]上的任何一点取值的概率密度函数(PDF)是常数 f ( x ) = 1 b − a f(x) = \frac{1}{b-a} f(x)=b−a1,则称 X X X在此区间上服从连续均匀分布。这表示 X X X落在该区间内的任何一个子区间的概率只与这个子区间的长度成正比,而与其位置无关。
均匀分布的性质
- 期望值:对于连续均匀分布 [ a , b ] [a, b] [a,b],其期望值(均值)为 μ = a + b 2 \mu = \frac{a + b}{2} μ=2a+b。
- 方差:其方差为 σ 2 = ( b − a ) 2 12 \sigma^2 = \frac{(b - a)^2}{12} σ2=12(b−a)2。
- 累积分布函数(CDF):对于连续情况,在 [ a , b ] [a, b] [a,b]区间内, P ( X ≤ x ) P(X \leq x) P(X≤x)是线性增加的,从 0 0 0增加到 1 1 1。
均匀分布在模拟、随机数生成以及作为其他更复杂分布的基础等方面有着广泛的应用。