CNN(
(conv1): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(pool): MaxPool2d(kernel_size
nn.CrossEntropyLoss()并不要求target与模型最后一层输出一样
最新推荐文章于 2024-08-07 17:36:44 发布
博客介绍了在PyTorch中,即使网络最后一层输出1000个类别,但实际训练数据只有10类,依然可以使用nn.CrossEntropyLoss进行训练,且不影响结果。这表明预训练模型的全连接层不必修改,例如GoogleLeNet可以应用于只有两类别的任务,只需适配正确的标签即可。
摘要由CSDN通过智能技术生成