nn.CrossEntropyLoss()并不要求target与模型最后一层输出一样

博客介绍了在PyTorch中,即使网络最后一层输出1000个类别,但实际训练数据只有10类,依然可以使用nn.CrossEntropyLoss进行训练,且不影响结果。这表明预训练模型的全连接层不必修改,例如GoogleLeNet可以应用于只有两类别的任务,只需适配正确的标签即可。
摘要由CSDN通过智能技术生成
CNN(
  (conv1): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (pool): MaxPool2d(kernel_size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值