【高等数学笔记】多元向量值函数的导数与微分

一、多元向量值函数导数与微分的定义

设有 n n n元向量值函数 f : U ( x 0 ) ⊆ R n → R m \bm f:U(x_0)\subseteq\mathbb{R}^n\to\mathbb{R}^m f:U(x0)RnRm,该函数可以表示成
f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋯ f m ( x ) ] = [ f 1 ( x 1 , x 2 , x 3 , ⋯   , x n ) f 2 ( x 1 , x 2 , x 3 , ⋯   , x n ) ⋯ f m ( x 1 , x 2 , x 3 , ⋯   , x n ) ] \bm f(\bm x)=\begin{bmatrix}f_1(\bm x)\\f_2(\bm x)\\\cdots\\f_m(\bm x)\end{bmatrix}=\begin{bmatrix}f_1(x_1,x_2,x_3,\cdots,x_n)\\f_2(x_1,x_2,x_3,\cdots,x_n)\\\cdots\\f_m(x_1,x_2,x_3,\cdots,x_n)\end{bmatrix} f(x)= f1(x)f2(x)fm(x) = f1(x1,x2,x3,,xn)f2(x1,x2,x3,,xn)fm(x1,x2,x3,,xn) 它将 n n n维空间中的点 x \bm x x映射为 m m m维空间中的点 f ( x ) \bm f(\bm x) f(x)。若 f \bm f f的每个分量 f 1 , f 2 , ⋯   , f n f_1,f_2,\cdots,f_n f1,f2,,fn都在点 x 0 \bm x_0 x0处可微,则我们定义 f \bm f f x 0 \bm x_0 x0处的导数雅可比矩阵)为 D f ( x 0 ) = [ ∂ f 1 ( x 0 ) ∂ x 1 ∂ f 1 ( x 0 ) ∂ x 2 ⋯ ∂ f 1 ( x 0 ) ∂ x n ∂ f 2 ( x 0 ) ∂ x 1 ∂ f 2 ( x 0 ) ∂ x 2 ⋯ ∂ f 2 ( x 0 ) ∂ x n ⋮ ⋮ ⋮ ∂ f m ( x 0 ) ∂ x 1 ∂ f m ( x 0 ) ∂ x 2 ⋯ ∂ f m ( x 0 ) ∂ x n ] = [ ∇ f 1 ( x 0 ) ∇ f 2 ( x 0 ) ⋮ ∇ f m ( x 0 ) ] \rm D\bm f(\bm x_0)=\begin{bmatrix}\frac{\partial f_1(\bm x_0)}{\partial x_1}&\frac{\partial f_1(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial f_1(\bm x_0)}{\partial x_n}\\\frac{\partial f_2(\bm x_0)}{\partial x_1}&\frac{\partial f_2(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial f_2(\bm x_0)}{\partial x_n}\\\vdots&\vdots&&\vdots\\\frac{\partial f_m(\bm x_0)}{\partial x_1}&\frac{\partial f_m(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial f_m(\bm x_0)}{\partial x_n}\end{bmatrix}=\begin{bmatrix}\nabla f_1(\bm x_0)\\\nabla f_2(\bm x_0)\\\vdots\\\nabla f_m(\bm x_0)\end{bmatrix} Df(x0)= x1f1(x0)x1f2(x0)x1fm(x0)x2f1(x0)x2f2(x0)x2fm(x0)xnf1(x0)xnf2(x0)xnfm(x0) = f1(x0)f2(x0)fm(x0) 定义 f \bm f f x 0 \bm x_0 x0处的微分 d f ( x 0 ) = [ d f 1 ( x 0 ) d f 2 ( x 0 ) ⋮ d f m ( x 0 ) ] = [ ∂ f 1 ( x 0 ) ∂ x 1 d x 1 + ∂ f 1 ( x 0 ) ∂ x 2 d x 2 + ⋯ + ∂ f 1 ( x 0 ) ∂ x n d x n ∂ f 2 ( x 0 ) ∂ x 1 d x 1 + ∂ f 2 ( x 0 ) ∂ x 2 d x 2 + ⋯ + ∂ f 2 ( x 0 ) ∂ x n d x n ⋮ ∂ f m ( x 0 ) ∂ x 1 d x 1 + ∂ f m ( x 0 ) ∂ x 2 d x 2 + ⋯ + ∂ f m ( x 0 ) ∂ x n d x n ] = [ ∂ f 1 ( x 0 ) ∂ x 1 ∂ f 1 ( x 0 ) ∂ x 2 ⋯ ∂ f 1 ( x 0 ) ∂ x n ∂ f 2 ( x 0 ) ∂ x 1 ∂ f 2 ( x 0 ) ∂ x 2 ⋯ ∂ f 2 ( x 0 ) ∂ x n ⋮ ⋮ ⋮ ∂ f m ( x 0 ) ∂ x 1 ∂ f m ( x 0 ) ∂ x 2 ⋯ ∂ f m ( x 0 ) ∂ x n ] [ d x 1 d x 2 ⋯ d x n ] = D f ( x 0 ) d x \begin{aligned}\text{d}\bm f(\bm x_0)&=\begin{bmatrix}\text{d}f_1(\bm x_0)\\\text{d}f_2(\bm x_0)\\\vdots\\\text{d}f_m(\bm x_0)\end{bmatrix}\\&=\begin{bmatrix}\frac{\partial f_1(\bm x_0)}{\partial x_1}\text{d}x_1+\frac{\partial f_1(\bm x_0)}{\partial x_2}\text{d}x_2+\cdots+\frac{\partial f_1(\bm x_0)}{\partial x_n}\text{d}x_n\\\frac{\partial f_2(\bm x_0)}{\partial x_1}\text{d}x_1+\frac{\partial f_2(\bm x_0)}{\partial x_2}\text{d}x_2+\cdots+\frac{\partial f_2(\bm x_0)}{\partial x_n}\text{d}x_n\\\vdots\\\frac{\partial f_m(\bm x_0)}{\partial x_1}\text{d}x_1+\frac{\partial f_m(\bm x_0)}{\partial x_2}\text{d}x_2+\cdots+\frac{\partial f_m(\bm x_0)}{\partial x_n}\text{d}x_n\end{bmatrix}\\&=\begin{bmatrix}\frac{\partial f_1(\bm x_0)}{\partial x_1}&\frac{\partial f_1(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial f_1(\bm x_0)}{\partial x_n}\\\frac{\partial f_2(\bm x_0)}{\partial x_1}&\frac{\partial f_2(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial f_2(\bm x_0)}{\partial x_n}\\\vdots&\vdots&&\vdots\\\frac{\partial f_m(\bm x_0)}{\partial x_1}&\frac{\partial f_m(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial f_m(\bm x_0)}{\partial x_n}\end{bmatrix}\begin{bmatrix}\text{d}x_1\\\text{d}x_2\\\cdots\\\text{d}x_n\end{bmatrix}\\&=\text{D}\bm{f}(\bm x_0)\text{d}\bm{x}\end{aligned} df(x0)= df1(x0)df2(x0)dfm(x0) = x1f1(x0)dx1+x2f1(x0)dx2++xnf1(x0)dxnx1f2(x0)dx1+x2f2(x0)dx2++xnf2(x0)dxnx1fm(x0)dx1+x2fm(x0)dx2++xnfm(x0)dxn = x1f1(x0)x1f2(x0)x1fm(x0)x2f1(x0)x2f2(x0)x2fm(x0)xnf1(x0)xnf2(x0)xnfm(x0) dx1dx2dxn =Df(x0)dx m = n m=n m=n时,雅可比矩阵为方阵,该方阵的行列式称为 f \bm f f x 0 \bm x_0 x0处的雅可比行列式(Jacobian Determinant,简称雅可比式),记作 J f ( x 0 ) = ∣ D f ( x 0 ) ∣ = ∂ ( f 1 , f 2 , ⋯   , f n ) ∂ ( x 1 , x 2 , ⋯   , x n ) ∣ x 0 \bm J_f(\bm x_0)=\left|\rm D\bm f(\bm x_0)\right|=\left.\frac{\partial(f_1,f_2,\cdots,f_n)}{\partial(x_1,x_2,\cdots,x_n)}\right|_{\bm x_0} Jf(x0)=Df(x0)=(x1,x2,,xn)(f1,f2,,fn) x0例如,设 { x ( ρ , θ ) = ρ cos ⁡ θ y ( ρ , θ ) = ρ sin ⁡ θ \begin{cases}x(\rho,\theta)=\rho\cos\theta\\y(\rho,\theta)=\rho\sin\theta\end{cases} {x(ρ,θ)=ρcosθy(ρ,θ)=ρsinθ ∂ ( x , y ) ∂ ( ρ , θ ) = ∣ cos ⁡ θ − ρ sin ⁡ θ sin ⁡ θ ρ cos ⁡ θ ∣ = ρ ( cos ⁡ 2 θ + sin ⁡ 2 θ ) = ρ \frac{\partial(x,y)}{\partial(\rho,\theta)}=\begin{vmatrix}\cos\theta&-\rho\sin\theta\\\sin\theta&\rho\cos\theta\end{vmatrix}=\rho(\cos^2\theta+\sin^2\theta)=\rho (ρ,θ)(x,y)= cosθsinθρsinθρcosθ =ρ(cos2θ+sin2θ)=ρ x 0 = ( x 1 , x 2 , ⋯   , x n ) T \bm x_0=(x_1,x_2,\cdots,x_n)^T x0=(x1,x2,,xn)T,我们定义 f \bm f f x 0 \bm x_0 x0处对 x i x_i xi偏导数 ∂ f ( x 0 ) ∂ x i = lim ⁡ Δ x i → 0 f ( [ x 1 x 2 ⋮ x i + Δ x i ⋮ x n ] ) − f ( [ x 1 x 2 ⋮ x i ⋮ x n ] ) Δ x i \frac{\partial\bm f(\bm x_0)}{\partial x_i}=\lim\limits_{\Delta x_i\to0}\frac{\bm f\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_i+\Delta x_i\\\vdots\\x_n\end{bmatrix}\right)-\bm f\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_i\\\vdots\\x_n\end{bmatrix}\right)}{\Delta x_i} xif(x0)=Δxi0limΔxif x1x2xi+Δxixn f x1x2xixn ∂ f ( x 0 ) ∂ x i \frac{\partial\bm f(\bm x_0)}{\partial x_i} xif(x0)存在时,有 ∂ f ( x 0 ) ∂ x i = [ ∂ f 1 ( x 0 ) ∂ x i ∂ f 2 ( x 0 ) ∂ x i ⋮ ∂ f m ( x 0 ) ∂ x i ] \frac{\partial\bm f(\bm x_0)}{\partial x_i}=\begin{bmatrix}\frac{\partial f_1(\bm x_0)}{\partial x_i}\\\frac{\partial f_2(\bm x_0)}{\partial x_i}\\\vdots\\\frac{\partial f_m(\bm x_0)}{\partial x_i}\end{bmatrix} xif(x0)= xif1(x0)xif2(x0)xifm(x0) 因此我们可以把雅可比矩阵 D f ( x 0 ) \rm D\bm f(\bm x_0) Df(x0)按列和按行分块分别写作 D f ( x 0 ) = [ ∂ f ( x 0 ) ∂ x 1 ∂ f ( x 0 ) ∂ x 2 ⋯ ∂ f ( x 0 ) ∂ x n ] = [ ∇ f 1 ( x 0 ) ∇ f 2 ( x 0 ) ⋮ ∇ f m ( x 0 ) ] \rm D\bm f(\bm x_0)=\begin{bmatrix}\frac{\partial\bm f(\bm x_0)}{\partial x_1}&\frac{\partial\bm f(\bm x_0)}{\partial x_2}&\cdots&\frac{\partial\bm f(\bm x_0)}{\partial x_n}\end{bmatrix}=\begin{bmatrix}\nabla f_1(\bm x_0)\\\nabla f_2(\bm x_0)\\\vdots\\\nabla f_m(\bm x_0)\end{bmatrix} Df(x0)=[x1f(x0)x2f(x0)xnf(x0)]= f1(x0)f2(x0)fm(x0)

二、多元向量值函数的微分运算法则

定理1 设向量值函数 f \bm f f g \bm g g都在点 x \bm x x处可微, u u u是在 x \bm x x处可微的数量值函数,则
(1) f + g \bm f+\bm g f+g x x x处可微,且其导数为 D ( f + g ) ( x ) = D f ( x ) + D g ( x ) \text{D}(\bm f+\bm g)(\bm x)=\rm D\bm f(\bm x)+\rm D\bm g(\bm x) D(f+g)(x)=Df(x)+Dg(x)(2) ⟨ f , g ⟩ \left\langle\bm f,\bm g\right\rangle f,g x \bm x x处可微,且其导数为 D ⟨ f , g ⟩ ( x ) = ( f ( x ) ) T D g ( x ) + ( g ( x ) ) T D f ( x ) \rm D\left\langle\bm f,\bm g\right\rangle(\bm x)=(\bm f(\bm x))^T\rm D\bm g(\bm x)+(\bm g(\bm x))^T\rm D\bm f(\bm x) Df,g(x)=(f(x))TDg(x)+(g(x))TDf(x)(3) u f u\bm f uf x \bm x x处可微,且其导数为 D ( u f ) ( x ) = u ( x ) D f ( x ) + f ( x ) ∇ u ( x ) \text{D}(u\bm f)(\bm x)=u(\bm x)\text D\bm f(\bm x)+\bm f(\bm x)\nabla u(\bm x) D(uf)(x)=u(x)Df(x)+f(x)u(x)(4) 若 f : R → R 3 , g : R → R 3 \bm f:\mathbb{R}\to\mathbb{R}^3,\bm g:\mathbb{R}\to\mathbb{R}^3 f:RR3,g:RR3,则向量积 f × g \bm f\times\bm g f×g x x x处可微,且其导数为 D ( f × g ) ( x ) = D f ( x ) × g ( x ) + f ( x ) × D g ( x ) \text{D}(\bm f\times\bm g)(x)=\text{D}\bm f(x)\times\bm g(x)+\bm f(x)\times\text{D}\bm g(x) D(f×g)(x)=Df(x)×g(x)+f(x)×Dg(x)证明:
(1) 显然成立。
(2) 设 f = [ f 1 f 2 ⋮ f m ] , g = [ g 1 g 2 ⋮ g m ] \bm f=\begin{bmatrix}f_1\\f_2\\\vdots\\f_m\end{bmatrix},\bm g=\begin{bmatrix}g_1\\g_2\\\vdots\\g_m\end{bmatrix} f= f1f2fm ,g= g1g2gm ,则数量值函数 F = ⟨ f , g ⟩ ( x ) = ∑ i = 1 m f i g i F=\left\langle\bm f,\bm g\right\rangle(\bm x)=\sum\limits_{i=1}^mf_ig_i F=f,g(x)=i=1mfigi,且 D F ( x ) = ∇ F ( x ) = ∑ i = 1 m ∇ f i g i ( x ) \begin{aligned}\text{D}F(\bm x)&=\nabla F(\bm x)\\&=\sum\limits_{i=1}^m\nabla f_ig_i(\bm x)\end{aligned} DF(x)=F(x)=i=1mfigi(x)我们知道,对于 j ∈ { 1 , 2 , ⋯   , n } j\in\{1,2,\cdots,n\} j{1,2,,n} ∂ f i g i ( x j ) ∂ x j = f i ∂ g i ( x j ) ∂ x j + g i ∂ f i ( x j ) ∂ x j \frac{\partial f_ig_i(x_j)}{\partial x_j}=f_i\frac{\partial g_i(x_j)}{\partial x_j}+g_i\frac{\partial f_i(x_j)}{\partial x_j} xjfigi(xj)=fixjgi(xj)+gixjfi(xj) ∇ f i g i ( x ) = ( f i ∂ g i ( x 1 ) ∂ x 1 + g i ∂ f i ( x 1 ) ∂ x 1 , f i ∂ g i ( x 2 ) ∂ x 2 + g i ∂ f i ( x 2 ) ∂ x 2 , ⋯   , f i ∂ g i ( x n ) ∂ x n + g i ∂ f i ( x n ) ∂ x n ) = f i ( x ) ∇ g i ( x ) + ∇ f i ( x ) g i ( x ) \begin{aligned}\nabla f_ig_i(\bm x)&=\left(f_i\frac{\partial g_i(x_1)}{\partial x_1}+g_i\frac{\partial f_i(x_1)}{\partial x_1},f_i\frac{\partial g_i(x_2)}{\partial x_2}+g_i\frac{\partial f_i(x_2)}{\partial x_2},\cdots,f_i\frac{\partial g_i(x_n)}{\partial x_n}+g_i\frac{\partial f_i(x_n)}{\partial x_n}\right)\\&=f_i(\bm x)\nabla g_i(\bm x)+\nabla f_i(\bm x)g_i(\bm x)\end{aligned} figi(x)=(fix1gi(x1)+gix1fi(x1),fix2gi(x2)+gix2fi(x2),,fixngi(xn)+gixnfi(xn))=fi(x)gi(x)+fi(x)gi(x)那么 D F ( x ) = ∑ i = 1 m [ f i ( x ) ∇ g i ( x ) + ∇ f i ( x ) g i ( x ) ] = [ f 1 ( x ) f 2 ( x ) ⋯ f m ( x ) ] [ ∇ g 1 ( x ) ∇ g 2 ( x ) ⋮ ∇ g m ( x ) ] + [ g 1 ( x ) g 2 ( x ) ⋯ g m ( x ) ] [ ∇ f 1 ( x ) ∇ f 2 ( x ) ⋮ ∇ f m ( x ) ] = ( f ( x ) ) T D g ( x ) + ( g ( x ) ) T D f ( x ) \begin{aligned}\text{D}F(\bm x)&=\sum\limits_{i=1}^m[f_i(\bm x)\nabla g_i(\bm x)+\nabla f_i(\bm x)g_i(\bm x)]\\&=\begin{bmatrix}f_1(\bm x)&f_2(\bm x)&\cdots&f_m(\bm x)\end{bmatrix}\begin{bmatrix}\nabla g_1(\bm x)\\\nabla g_2(\bm x)\\\vdots\\\nabla g_m(\bm x)\end{bmatrix}+\begin{bmatrix}g_1(\bm x)&g_2(\bm x)&\cdots&g_m(\bm x)\end{bmatrix}\begin{bmatrix}\nabla f_1(\bm x)\\\nabla f_2(\bm x)\\\vdots\\\nabla f_m(\bm x)\end{bmatrix}\\&=(\bm f(\bm x))^T\rm D\bm g(\bm x)+(\bm g(\bm x))^T\rm D\bm f(\bm x)\end{aligned} DF(x)=i=1m[fi(x)gi(x)+fi(x)gi(x)]=[f1(x)f2(x)fm(x)] g1(x)g2(x)gm(x) +[g1(x)g2(x)gm(x)] f1(x)f2(x)fm(x) =(f(x))TDg(x)+(g(x))TDf(x)
(3) 是(2)的特例。
(4) D ( f × g ) ( x ) = D ∣ i j k f 1 f 2 f 3 g 1 g 2 g 3 ∣ = d d x [ f 2 g 3 − f 3 g 2 f 3 g 1 − f 1 g 3 f 1 g 2 − f 2 g 1 ] = [ f 2 ′ g 3 + f 2 g 3 ′ − f 3 ′ g 2 − f 3 g 2 ′ f 3 ′ g 1 + f 3 g 1 ′ − f 1 ′ g 3 − f 1 g 3 ′ f 1 ′ g 2 + f 1 g 2 ′ − f 2 ′ g 1 − f 2 g 1 ′ ] = [ f 2 ′ g 3 − f 3 ′ g 2 f 3 ′ g 1 − f 1 ′ g 3 f 1 ′ g 2 − f 2 ′ g 1 ] + [ f 2 g 3 ′ − f 3 g 2 ′ f 3 g 1 ′ − f 1 g 3 ′ f 1 g 2 ′ − f 2 g 1 ′ ] = [ f 1 ′ f 2 ′ f 3 ′ ] × [ g 1 g 2 g 3 ] + [ f 1 f 2 f 3 ] × [ g 1 ′ g 2 ′ g 3 ′ ] = D f ( x ) × g ( x ) + f ( x ) × D g ( x ) \begin{aligned}\text{D}(\bm f\times\bm g)(x)&=\text{D}\begin{vmatrix}\bm i&\bm j&\bm k\\f_1&f_2&f_3\\g_1&g_2&g_3\end{vmatrix}\\&=\frac{\rm d}{\text{d}x}\begin{bmatrix}f_2g_3-f_3g_2\\f_3g_1-f_1g_3\\f_1g_2-f_2g_1\end{bmatrix}\\&=\begin{bmatrix}f_2'g_3+f_2g_3'-f_3'g_2-f_3g_2'\\f_3'g_1+f_3g_1'-f_1'g_3-f_1g_3'\\f_1'g_2+f_1g_2'-f_2'g_1-f_2g_1'\end{bmatrix}\\&=\begin{bmatrix}f_2'g_3-f_3'g_2\\f_3'g_1-f_1'g_3\\f_1'g_2-f_2'g_1\end{bmatrix}+\begin{bmatrix}f_2g_3'-f_3g_2'\\f_3g_1'-f_1g_3'\\f_1g_2'-f_2g_1'\end{bmatrix}\\&=\begin{bmatrix}f_1'\\f_2'\\f_3'\end{bmatrix}\times\begin{bmatrix}g_1\\g_2\\g_3\end{bmatrix}+\begin{bmatrix}f_1\\f_2\\f_3\end{bmatrix}\times\begin{bmatrix}g_1'\\g_2'\\g_3'\end{bmatrix}\\&=\text{D}\bm f(x)\times\bm g(x)+\bm f(x)\times\text{D}\bm g(x)\end{aligned} D(f×g)(x)=D if1g1jf2g2kf3g3 =dxd f2g3f3g2f3g1f1g3f1g2f2g1 = f2g3+f2g3f3g2f3g2f3g1+f3g1f1g3f1g3f1g2+f1g2f2g1f2g1 = f2g3f3g2f3g1f1g3f1g2f2g1 + f2g3f3g2f3g1f1g3f1g2f2g1 = f1f2f3 × g1g2g3 + f1f2f3 × g1g2g3 =Df(x)×g(x)+f(x)×Dg(x)证毕。∎

定理2 r = r ( t ) \bm r=\bm r(t) r=r(t)表示空间中动点 [ x ( t ) y ( t ) z ( t ) ] \begin{bmatrix}x(t)\\y(t)\\z(t)\end{bmatrix} x(t)y(t)z(t) 的向径,则 ⟨ r ′ ( t ) , r ( t ) ⟩ ≡ 0 ⟺ ∥ r ( t ) ∥ ≡ c \left\langle\bm r'(t),\bm r(t)\right\rangle\equiv0\Longleftrightarrow\|\bm r(t)\|\equiv c r(t),r(t)0r(t)c其中 c c c为常数,这表示动点的轨迹在以原点为中心的球面上。
证明
由定理1(2)知 d d t ⟨ r , r ⟩ ( t ) = ⟨ r , r ′ ⟩ ( t ) + ⟨ r ′ , r ⟩ ( t ) \frac{\rm d}{\text{d}t}\left\langle\bm r,\bm r\right\rangle(t)=\left\langle\bm r,\bm r'\right\rangle(t)+\left\langle\bm r',\bm r\right\rangle(t) dtdr,r(t)=r,r(t)+r,r(t) d d t ∥ r ( t ) ∥ 2 = 2 ⟨ r ′ ( t ) , r ( t ) ⟩ \frac{\rm d}{\text{d}t}\|\bm r(t)\|^2=2\left\langle\bm r'(t),\bm r(t)\right\rangle dtdr(t)2=2r(t),r(t) ⟨ r ′ ( t ) , r ( t ) ⟩ ≡ 0 ⟺ d d t ∥ r ( t ) ∥ 2 ≡ 0 ⟺ ∥ r ( t ) ∥ 2 ≡ C ⟺ ∥ r ( t ) ∥ ≡ c \left\langle\bm r'(t),\bm r(t)\right\rangle\equiv0\Longleftrightarrow\frac{\rm d}{\text{d}t}\|\bm r(t)\|^2\equiv0\Longleftrightarrow\|\bm r(t)\|^2\equiv C\Longleftrightarrow\|\bm r(t)\|\equiv c r(t),r(t)0dtdr(t)20r(t)2Cr(t)c。∎

定理3(向量值函数的链式法则) 设向量值函数 g ( x ) : R n → R p \bm g(\bm x):\mathbb{R}^n\to\mathbb{R}^p g(x):RnRp在点 x 0 \bm x_0 x0处可微,向量值函数 f ( u ) : R p → R m \bm f(\bm u):\mathbb{R}^p\to\mathbb{R}^m f(u):RpRm在点 g ( x 0 ) \bm g(\bm x_0) g(x0)处可微,则复合函数 w ( x ) = f ( g ( x ) ) \bm w(\bm x)=\bm f(\bm g(\bm x)) w(x)=f(g(x))在点 x 0 \bm x_0 x0处可微,且 D w ( x 0 ) = D f ( g ( x 0 ) ) D g ( x 0 ) \rm D\bm w(\bm x_0)=\rm D\bm f(\bm g(\bm x_0))\rm D\bm g(\bm x_0) Dw(x0)=Df(g(x0))Dg(x0)证明提要:由复合函数的求导法则, D w ( x ) \rm D\bm w(\bm x) Dw(x)的第 ( i , j ) (i,j) (i,j)个元素 ∂ w i ∂ x j \frac{\partial w_i}{\partial x_j} xjwi可以表示为 ∂ w i ∂ x j = ∂ f i ( g ( x ) ) ∂ x j = ∂ f i ( g 1 ( x 1 , x 2 , ⋯   , x n ) , g 2 ( x 1 , x 2 , ⋯   , x n ) , ⋯   , g p ( x 1 , x 2 , ⋯   , x n ) ) ∂ x j = ∑ k = 1 p ∂ f i ∂ u k ∂ g k ∂ x j \begin{aligned}\frac{\partial w_i}{\partial x_j}&=\frac{\partial f_i(\bm g(\bm x))}{\partial x_j}\\&=\frac{\partial f_i(g_1(x_1,x_2,\cdots,x_n),g_2(x_1,x_2,\cdots,x_n),\cdots,g_p(x_1,x_2,\cdots,x_n))}{\partial x_j}\\&=\sum\limits_{k=1}^{p}\frac{\partial f_i}{\partial u_k}\frac{\partial g_k}{\partial x_j}\end{aligned} xjwi=xjfi(g(x))=xjfi(g1(x1,x2,,xn),g2(x1,x2,,xn),,gp(x1,x2,,xn))=k=1pukfixjgk恰好是矩阵乘法的形式。∎

n = p = m n=p=m n=p=m时,取两端的行列式得 ∂ ( w 1 , w 2 , ⋯   , w n ) ∂ ( x 1 , x 2 , ⋯   , x n ) = ∂ ( w 1 , w 2 , ⋯   , w n ) ∂ ( u 1 , u 2 , ⋯   , u n ) ∂ ( g 1 , g 2 , ⋯   , g n ) ∂ ( x 1 , x 2 , ⋯   , x n ) \frac{\partial(w_1,w_2,\cdots,w_n)}{\partial(x_1,x_2,\cdots,x_n)}=\frac{\partial(w_1,w_2,\cdots,w_n)}{\partial(u_1,u_2,\cdots,u_n)}\frac{\partial(g_1,g_2,\cdots,g_n)}{\partial(x_1,x_2,\cdots,x_n)} (x1,x2,,xn)(w1,w2,,wn)=(u1,u2,,un)(w1,w2,,wn)(x1,x2,,xn)(g1,g2,,gn)即复合函数的雅可比式是两个函数的雅可比式的乘积( J w = J f J g \bm J_w=\bm J_f\bm J_g Jw=JfJg)。

推论 f , g : R n → R n \bm f,\bm g:\mathbb{R}^n\to\mathbb{R}^n f,g:RnRn互为反函数,则它们的雅可比式互为倒数。
证明:令 w ( x ) = f ( g ( x ) ) ≡ x \bm w(\bm x)=\bm f(\bm g(\bm x))\equiv \bm x w(x)=f(g(x))x,而 D w ( x ) = I \rm D\bm w(\bm x)=\bm I Dw(x)=I,故 J w = 1 \bm J_w=1 Jw=1 J f J g = 1 \bm J_f\bm J_g=1 JfJg=1。∎

三、由方程所确定的隐函数的微分法

例1 已知方程组 { F 1 ( x , y , u , v ) = x u + y v = 0 F 2 ( x , y , u , v ) = y u + x v = 1 \begin{cases}F_1(x,y,u,v)=xu+yv=0\\F_2(x,y,u,v)=yu+xv=1\end{cases} {F1(x,y,u,v)=xu+yv=0F2(x,y,u,v)=yu+xv=1确定了隐函数 { u = u ( x , y ) v = v ( x , y ) \begin{cases}u=u(x,y)\\v=v(x,y)\end{cases} {u=u(x,y)v=v(x,y),求(1) ∂ u ∂ x \partial u\over\partial x xu及(2) ∂ v ∂ y \partial v\over\partial y yv

(1) 方程组两边对 x x x求偏导得 { u + x ∂ u ∂ x + y ∂ v ∂ x = 0 y ∂ u ∂ x + v + x ∂ v ∂ x = 0 \begin{cases}u+x{\partial u\over\partial x}+y{\partial v\over\partial x}=0\\y{\partial u\over\partial x}+v+x{\partial v\over\partial x}=0\end{cases} {u+xxu+yxv=0yxu+v+xxv=0这是一个关于 ∂ u ∂ x , ∂ v ∂ x {\partial u\over\partial x},{\partial v\over\partial x} xu,xv的二元一次方程组,可以表示成 [ x y y x ] [ ∂ u ∂ x ∂ v ∂ x ] = [ − u − v ] \begin{bmatrix}x&y\\y&x\end{bmatrix}\begin{bmatrix}{\partial u\over\partial x}\\{\partial v\over\partial x}\end{bmatrix}=\begin{bmatrix}-u\\-v\end{bmatrix} [xyyx][xuxv]=[uv]其中系数行列式即为雅可比式 J = ∂ ( F 1 , F 2 ) ∂ ( u , v ) \bm J=\frac{\partial(F_1,F_2)}{\partial(u,v)} J=(u,v)(F1,F2)。根据Cramer法则, ∂ u ∂ x = J u J = ∣ − u y − v x ∣ ∣ x y y x ∣ = v y − u x x 2 − y 2 \frac{\partial u}{\partial x}=\frac{\bm J_u}{\bm J}=\frac{\begin{vmatrix}-u&y\\-v&x\end{vmatrix}}{\begin{vmatrix}x&y\\y&x\end{vmatrix}}=\frac{vy-ux}{x^2-y^2} xu=JJu= xyyx uvyx =x2y2vyux(2) 同理可得 ∂ v ∂ y = v y − u x x 2 − y 2 \frac{\partial v}{\partial y}=\frac{vy-ux}{x^2-y^2} yv=x2y2vyux。注意,原方程中将 u u u v v v互换、 x x x y y y互换所得的方程与原方程完全相同,所以 ∂ u ∂ x = ∂ v ∂ y \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} xu=yv。∎

例2 已知 { u + v + w = x u v + v w + w u = y u v w = z \begin{cases}u+v+w=x\\uv+vw+wu=y\\uvw=z\end{cases} u+v+w=xuv+vw+wu=yuvw=z,求 ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z} xu,yu,zu
:两边取微分得 { d u + d v + d w = d x ( v + w ) d u + ( u + w ) d v + ( u + v ) d w = d y v w d u + u w d v + u v d w = d z \begin{cases}\text{d}u+\text{d}v+\text{d}w&=\text{d}x\\(v+w)\text{d}u+(u+w)\text{d}v+(u+v)\text{d}w&=\text{d}y\\vw\text{d}u+uw\text{d}v+uv\text{d}w&=\text{d}z\end{cases} du+dv+dw(v+w)du+(u+w)dv+(u+v)dwvwdu+uwdv+uvdw=dx=dy=dz [ 1 1 1 v + w u + w u + v v w u w u v ] [ d u d v d w ] = [ d x d y d z ] \begin{bmatrix}1&1&1\\v+w&u+w&u+v\\vw&uw&uv\end{bmatrix}\begin{bmatrix}\text{d}u\\\text{d}v\\\text{d}w\end{bmatrix}=\begin{bmatrix}\text{d}x\\\text{d}y\\\text{d}z\end{bmatrix} 1v+wvw1u+wuw1u+vuv dudvdw = dxdydz 雅可比行列式 J = ∣ 1 1 1 v + w u + w u + v v w u w u v ∣ = u 2 ( v − w ) + v 2 ( w − u ) + w 2 ( u − v ) = ( u − v ) ( v − w ) ( u − w ) \begin{aligned}\bm J&=\begin{vmatrix}1&1&1\\v+w&u+w&u+v\\vw&uw&uv\end{vmatrix}\\&=u^2(v-w)+v^2(w-u)+w^2(u-v)\\&=(u-v)(v-w)(u-w)\end{aligned} J= 1v+wvw1u+wuw1u+vuv =u2(vw)+v2(wu)+w2(uv)=(uv)(vw)(uw) d u = J u J = ∣ d x 1 1 d y u + w u + v d z u w u v ∣ J = u 2 ( v − w ) d x − u ( v − w ) d y + ( v − w ) d z J = u 2 d x − u d y + d z ( u − v ) ( u − w ) \begin{aligned}\text{d}u&=\frac{\bm J_u}{\bm J}\\&=\frac{\begin{vmatrix}\text{d}x&1&1\\\text{d}y&u+w&u+v\\\text{d}z&uw&uv\end{vmatrix}}{\bm J}\\&=\frac{u^2(v-w)\text{d}x-u(v-w)\text{d}y+(v-w)\text{d}z}{\bm J}\\&=\frac{u^2\text{d}x-u\text{d}y+\text{d}z}{(u-v)(u-w)}\end{aligned} du=JJu=J dxdydz1u+wuw1u+vuv =Ju2(vw)dxu(vw)dy+(vw)dz=(uv)(uw)u2dxudy+dz因此 { ∂ u ∂ x = u 2 ( u − v ) ( u − w ) ∂ u ∂ y = − u ( u − v ) ( u − w ) ∂ u ∂ z = 1 ( u − v ) ( u − w ) \begin{cases}\frac{\partial u}{\partial x}=\frac{u^2}{(u-v)(u-w)}\\\frac{\partial u}{\partial y}=-\frac{u}{(u-v)(u-w)}\\\frac{\partial u}{\partial z}=\frac{1}{(u-v)(u-w)}\end{cases} xu=(uv)(uw)u2yu=(uv)(uw)uzu=(uv)(uw)1

  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值