【高等数学笔记】多元函数微分学在几何上的应用、Frenet标架、空间曲线的曲率与挠率

一、空间曲线的切线与法平面

空间曲线的参数方程: R → R 3 \mathbb R\to\mathbb R^3 RR3 r ( t ) = ( x ( t ) , y ( t ) , z ( t ) ) ( t ∈ [ α , β ] ) \bm r(t)=(x(t),y(t),z(t))\quad(t\in[\alpha,\beta]) r(t)=(x(t),y(t),z(t))(t[α,β])
连续曲线: r ( t ) \bm r(t) r(t) [ α , β ] [\alpha,\beta] [α,β]上连续,即 x ( t ) , y ( t ) , z ( t ) x(t),y(t),z(t) x(t),y(t),z(t)均在 [ α , β ] [\alpha,\beta] [α,β]上连续
简单曲线:连续且不自交,即 ∀ t 1 , t 2 ∈ ( α , β ) \forall t_1,t_2\in(\alpha,\beta) t1,t2(α,β) t 1 ≠ t 2 t_1\ne t_2 t1=t2,均有 r ( t 1 ) ≠ r ( t 2 ) \bm r(t_1)\ne\bm r(t_2) r(t1)=r(t2)
简单闭曲线:简单曲线且 r ( α ) = r ( β ) \bm r(\alpha)=\bm r(\beta) r(α)=r(β)
正向: t t t增大的方向(负向: t t t减小的方向)
有向曲线:规定了正向的曲线
切向量:设点 P 0 = r ( t 0 ) P_0=\bm r(t_0) P0=r(t0),则 r ˙ ( t 0 ) \dot\bm r(t_0) r˙(t0)就是在点 P 0 P_0 P0的一个切向量
切线 x − x 0 ( t 0 ) x ˙ ( t 0 ) = y − y 0 ( t 0 ) y ˙ ( t 0 ) = z − z 0 ( t 0 ) z ˙ ( t 0 ) \frac{x-x_0(t_0)}{\dot x(t_0)}=\frac{y-y_0(t_0)}{\dot y(t_0)}=\frac{z-z_0(t_0)}{\dot z(t_0)} x˙(t0)xx0(t0)=y˙(t0)yy0(t0)=z˙(t0)zz0(t0) ρ = r ( t 0 ) + t r ˙ ( t 0 ) \bm\rho=\bm r(t_0)+t\dot\bm r(t_0) ρ=r(t0)+tr˙(t0)
光滑曲线:切线方向连续变化的曲线,即 r ( t ) \bm r(t) r(t)有连续导数且导数在 [ α , β ] [\alpha,\beta] [α,β]上恒不为 0 \bm 0 0
法线:过 P 0 P_0 P0且与 P 0 P_0 P0处的切线垂直的任一直线
法平面:所有法线位于法平面内,方程: r ˙ ( t 0 ) ⋅ [ ρ − r ( t 0 ) ] = 0 \dot\bm r(t_0)\cdot[\bm\rho-\bm r(t_0)]=0 r˙(t0)[ρr(t0)]=0 x ˙ ( t 0 ) [ x − x ( t 0 ) ] + y ˙ ( t 0 ) [ y − y ( t 0 ) ] + z ˙ ( t 0 ) [ z − z ( t 0 ) ] = 0 \dot x(t_0)[x-x(t_0)]+\dot y(t_0)[y-y(t_0)]+\dot z(t_0)[z-z(t_0)]=0 x˙(t0)[xx(t0)]+y˙(t0)[yy(t0)]+z˙(t0)[zz(t0)]=0
一般式方程:设曲线方程为 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} {F(x,y,z)=0G(x,y,z)=0,且雅可比式 ∂ ( F , G ) ∂ ( y , z ) ∣ P 0 ≠ 0 \left.\frac{\partial(F,G)}{\partial(y,z)}\right|_{P_0}\ne0 (y,z)(F,G)P0=0,可以求解关于 d x , d y , d z \text{d}x,\text{d}y,\text{d}z dx,dy,dz的方程组 { F x ( P 0 ) d x + F y ( P 0 ) d y + F z ( P 0 ) d z G x ( P 0 ) d x + G y ( P 0 ) d y + G z ( P 0 ) d z \begin{cases}F_x(P_0)\text dx+F_y(P_0)\text dy+F_z(P_0)\text dz\\G_x(P_0)\text dx+G_y(P_0)\text dy+G_z(P_0)\text dz\end{cases} {Fx(P0)dx+Fy(P0)dy+Fz(P0)dzGx(P0)dx+Gy(P0)dy+Gz(P0)dz其任一个非零解 ( d x , d y , d z ) (\text dx,\text dy,\text dz) (dx,dy,dz)就是切向量。

二、弧长

弧长 s = lim ⁡ d → 0 ∑ i = 1 n ∥ P i − 1 P i → ∥ = ∫ α β ∥ r ˙ ( t ) ∥ d t = ∫ α β [ x ˙ ( t ) ] 2 + [ y ˙ ( t ) ] 2 + [ z ˙ ( t ) ] 2 d t s=\lim\limits_{d\to0}\sum\limits_{i=1}^n\left\|\overrightarrow{P_{i-1}P_i}\right\|=\int_\alpha^\beta\|\dot\bm r(t)\|\text dt=\int_\alpha^\beta\sqrt{[\dot x(t)]^2+[\dot y(t)]^2+[\dot z(t)]^2}\text dt s=d0limi=1nPi1Pi =αβr˙(t)dt=αβ[x˙(t)]2+[y˙(t)]2+[z˙(t)]2 dt
可求长的曲线:上式极限存在
弧微分 d s = ∥ r ˙ ( t ) ∥ d t = [ x ˙ ( t ) ] 2 + [ y ˙ ( t ) ] 2 + [ z ˙ ( t ) ] 2 d t \text{d}s=\|\dot\bm r(t)\|\text dt=\sqrt{[\dot x(t)]^2+[\dot y(t)]^2+[\dot z(t)]^2}\text dt ds=r˙(t)dt=[x˙(t)]2+[y˙(t)]2+[z˙(t)]2 dt
自然参数 r = r ( t ( s ) ) \bm r=\bm r(t(s)) r=r(t(s)) s s s为自然参数
应用:例如 d r d s \frac{\text d\bm r}{\text ds} dsdr为单位向量, d x d s = cos ⁡ α , d y d s = cos ⁡ β , d z d s = cos ⁡ γ \frac{\text dx}{\text ds}=\cos\alpha,\frac{\text dy}{\text ds}=\cos\beta,\frac{\text dz}{\text ds}=\cos\gamma dsdx=cosα,dsdy=cosβ,dsdz=cosγ

三、曲面的切平面与法线

  • 参数方程:
    D ⊆ R 2 → R 3 D\subseteq\mathbb R^2\to\mathbb R^3 DR2R3 r = r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) \bm r=\bm r(u,v)=(x(u,v),y(u,v),z(u,v)) r=r(u,v)=(x(u,v),y(u,v),z(u,v))
    u u u曲线:让 u u u变化, v v v不变: r = r ( u , v 0 ) = ( x ( u , v 0 ) , y ( u , v 0 ) , z ( u , v 0 ) ) \bm r=\bm r(u,v_0)=(x(u,v_0),y(u,v_0),z(u,v_0)) r=r(u,v0)=(x(u,v0),y(u,v0),z(u,v0))
    v v v曲线:让 v v v变化, u u u不变: r = r ( u 0 , v ) = ( x ( u 0 , v ) , y ( u 0 , v ) , z ( u 0 , v ) ) \bm r=\bm r(u_0,v)=(x(u_0,v),y(u_0,v),z(u_0,v)) r=r(u0,v)=(x(u0,v),y(u0,v),z(u0,v))
    参数曲线网: u u u曲线族和 v v v曲线族构成
    法向量:设 r u = ( x u , y u , z u ) , r v = ( x v , y v , z v ) \bm r_u=(x_u,y_u,z_u),\bm r_v=(x_v,y_v,z_v) ru=(xu,yu,zu),rv=(xv,yv,zv),则 r u × r v = ∣ i j k x u y u z u x v y v z v ∣ \bm r_u\times\bm r_v=\begin{vmatrix}\bm i&\bm j&\bm k\\x_u&y_u&z_u\\x_v&y_v&z_v\end{vmatrix} ru×rv=ixuxvjyuyvkzuzv为法向量
    正则点: r u × r v ≠ 0 \bm r_u\times\bm r_v\ne0 ru×rv=0
    切平面:设法向量为 ( A , B , C ) (A,B,C) (A,B,C),则切平面方程为 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
    法线: x − x 0 ( t 0 ) A = y − y 0 ( t 0 ) B = z − z 0 ( t 0 ) C \frac{x-x_0(t_0)}A=\frac{y-y_0(t_0)}B=\frac{z-z_0(t_0)}C Axx0(t0)=Byy0(t0)=Czz0(t0)
  • 一般式方程:
    F ( x , y , z ) = 0 ⟹ F x d x + F y d y + F z d z = 0 F(x,y,z)=0\Longrightarrow F_x\text dx+F_y\text dy+F_z\text dz=0 F(x,y,z)=0Fxdx+Fydy+Fzdz=0
    法向量: ( F x , F y , F z ) (F_x,F_y,F_z) (Fx,Fy,Fz)
    切平面: F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0)=0 Fx(xx0)+Fy(yy0)+Fz(zz0)=0
    法线: x − x 0 ( t 0 ) F x = y − y 0 ( t 0 ) F y = z − z 0 ( t 0 ) F z \frac{x-x_0(t_0)}{F_x}=\frac{y-y_0(t_0)}{F_y}=\frac{z-z_0(t_0)}{F_z} Fxxx0(t0)=Fyyy0(t0)=Fzzz0(t0)
  • z = f ( x , y ) z=f(x,y) z=f(x,y)
    切平面: f x ( x − x 0 ) + f y ( y − y 0 ) − ( z − z 0 ) = 0 f_x(x-x_0)+f_y(y-y_0)-(z-z_0)=0 fx(xx0)+fy(yy0)(zz0)=0 z − z 0 = f x ( x − x 0 ) + f y ( y − y 0 ) z-z_0=f_x(x-x_0)+f_y(y-y_0) zz0=fx(xx0)+fy(yy0)
    法线: x − x 0 ( t 0 ) f x = y − y 0 ( t 0 ) f y = z − z 0 ( t 0 ) − 1 \frac{x-x_0(t_0)}{f_x}=\frac{y-y_0(t_0)}{f_y}=\frac{z-z_0(t_0)}{-1} fxxx0(t0)=fyyy0(t0)=1zz0(t0)

四、Frenet标架

定义 r ′ = d r d s , r ˙ = d r d t \bm r'=\frac{\text d\bm r}{\text ds},\dot\bm r=\frac{\text d\bm r}{\text dt} r=dsdr,r˙=dtdr

1. 法平面与切线

切向量(Tangent Vector): r ˙ ( t 0 ) = d r d s d s d t = r ′ d s d t = ∥ r ˙ ∥ r ′ \dot\bm r(t_0)=\frac{\text d\bm r}{\text ds}\frac{\text ds}{\text dt}=\bm r'\frac{\text ds}{\text dt}=\|\dot\bm r\|\bm r' r˙(t0)=dsdrdtds=rdtds=r˙r,故 r ′ \bm r' r也是切向量,且是单位切向量,记作 T ( s 0 ) \bm T(s_0) T(s0) T ( s 0 ) = r ′ ( s 0 ) = r ˙ ∥ r ˙ ∥ \bm T(s_0)=\bm r'(s_0)=\frac{\dot\bm r}{\|\dot\bm r\|} T(s0)=r(s0)=r˙r˙法平面:其法向量是切向量

2. 密切平面与次法线

密切平面:将 r ( s 0 ) \bm r(s_0) r(s0)处的切线与 r ( s 0 + Δ s ) \bm r(s_0+\Delta s) r(s0+Δs)处的切线确定的平面记作 π ′ \pi' π,当 Δ s → 0 \Delta s\to0 Δs0 π ′ \pi' π趋于 π \pi π,则称 π \pi π为与曲线最贴近的平面,称作密切平面
次法向量(Binormal Vector):密切平面的法向量,记作 B ( S 0 ) \bm B(S_0) B(S0) B ( s 0 ) = ( r ′ ( s 0 ) × r ′ ′ ( s 0 ) ) 0 = r ˙ × r ¨ ∥ r ˙ × r ¨ ∥ \bm B(s_0)=(\bm r'(s_0)\times\bm r''(s_0))^0=\frac{\dot\bm r\times\ddot\bm r}{\|\dot\bm r\times\ddot\bm r\|} B(s0)=(r(s0)×r(s0))0=r˙×r¨r˙×r¨

3. 从切平面与主法线

主法向量(Normal Vector):就是法向加速度,即速度变化的方向。
考虑物体运动的方程为 r = r ( t ) \bm r=\bm r(t) r=r(t),速度为 v = r ˙ \bm v=\dot\bm r v=r˙,加速度为 a = r ¨ \bm a=\ddot\bm r a=r¨。将速度写成 v = ∥ r ˙ ∥ r ′ \bm v=\|\dot\bm r\|\bm r' v=r˙r,则 a = d v d t = d ∥ r ˙ ∥ d t r ′ + ∥ r ˙ ∥ d r ′ d t \bm a=\frac{\text d\bm v}{\text dt}=\frac{\text d\|\dot\bm r\|}{\text dt}\bm r'+\|\dot\bm r\|\frac{\text d\bm r'}{\text dt} a=dtdv=dtdr˙r+r˙dtdr其中 a n = ∥ r ˙ ∥ d r ′ d t \bm a_n=\|\dot\bm r\|\frac{\text d\bm r'}{\text dt} an=r˙dtdr是法向加速度。而 d r ′ d t = d r ′ d s d s d t = r ′ ′ ∥ r ˙ ∥ \frac{\text d\bm r'}{\text dt}=\frac{\text d\bm r'}{\text ds}\frac{\text ds}{\text dt}=\bm r''\|\dot\bm r\| dtdr=dsdrdtds=rr˙ a n = r ′ ′ ∥ r ˙ ∥ 2 = r ′ ′ v 2 \bm a_n=\bm r''\|\dot\bm r\|^2=\bm r''v^2 an=rr˙2=rv2定义此方向上的单位向量为主法向量: N ( s 0 ) = r ′ ′ ( s 0 ) ∥ r ′ ′ ( s 0 ) ∥ \bm N(s_0)=\frac{\bm r''(s_0)}{\|\bm r''(s_0)\|} N(s0)=r(s0)r(s0),很难用 r ˙ \dot\bm r r˙ r ¨ \ddot\bm r r¨直接计算,但我们有 N ( s 0 ) = B ( s 0 ) × T ( s 0 ) \bm N(s_0)=\bm B(s_0)\times\bm T(s_0) N(s0)=B(s0)×T(s0)注意不要乘反了,否则乘出来肯定是 0 \bm 0 0

五、空间曲线的曲率与挠率

1. 曲率

曲率: κ = lim ⁡ Δ s → 0 ∣ Δ θ Δ s ∣ = ∥ T ′ ( s ) ∥ = ∥ r ′ ′ ( s ) ∥ = ∥ r ˙ × r ¨ ∥ ∥ r ˙ ∥ 3 \kappa=\lim\limits_{\Delta s\to0}\left|\frac{\Delta\theta}{\Delta s}\right|=\|\bm T'(s)\|=\|\bm r''(s)\|=\frac{\|\dot\bm r\times\ddot\bm r\|}{\|\dot\bm r\|^3} κ=Δs0limΔsΔθ=T(s)=r(s)=r˙3r˙×r¨反映曲线切线方向的转动快慢程度。
对于平面曲线 r = ( x ( t ) , y ( t ) , 0 ) \bm r=(x(t),y(t),0) r=(x(t),y(t),0) κ = ∣ x ˙ y ¨ − y ˙ x ¨ ∣ [ x ˙ 2 + y ˙ 2 ] 3 2 \kappa=\frac{|\dot x\ddot y-\dot y\ddot x|}{[\dot x^2+\dot y^2]^{\frac32}} κ=[x˙2+y˙2]23x˙y¨y˙x¨对于平面曲线 y = y ( x ) y=y(x) y=y(x) κ = ∣ y ′ ′ ∣ [ 1 + y ′ 2 ] 3 2 \kappa=\frac{|y''|}{[1+y'^2]^\frac32} κ=[1+y2]23y曲率半径: ρ = 1 κ \rho=\frac1\kappa ρ=κ1

2. 挠率

挠率: τ ( s ) = − B ′ ( s ) ⋅ N ( s ) = [ r ′ ( s ) r ′ ′ ( s ) r ′ ′ ′ ( s ) ] ∥ r ′ ′ ( s ) ∥ 2 = [ r ˙ ( t ) r ¨ ( t ) d 3 r d t 3 ] ∥ r ˙ ( t ) × r ¨ ( t ) ∥ 2 \tau(s)=-\bm B'(s)\cdot\bm N(s)=\frac{[\bm r'(s)\quad\bm r''(s)\quad\bm r'''(s)]}{\|\bm r''(s)\|^2}=\frac{[\dot\bm r(t)\quad\ddot\bm r(t)\quad\frac{\text d^3\bm r}{\text dt^3}]}{\|\dot\bm r(t)\times\ddot\bm r(t)\|^2} τ(s)=B(s)N(s)=r(s)2[r(s)r(s)r(s)]=r˙(t)×r¨(t)2[r˙(t)r¨(t)dt3d3r]同时有 ∣ τ ( s ) ∣ = ∥ B ′ ( s ) ∥ |\tau(s)|=\|\bm B'(s)\| τ(s)=B(s)
反映曲线偏离密切平面的程度。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多元函数微分是微积分的一个分支,主要研究多元函数的导数、偏导数、全微分等概念和性质。 多元函数的导数 对于函数 $f(x_1,x_2,\cdots,x_n)$,如果存在极限 $$ \lim_{\Delta x_i\rightarrow 0}\frac{f(x_1+\Delta x_1,x_2+\Delta x_2,\cdots,x_n+\Delta x_n)-f(x_1,x_2,\cdots,x_n)}{\Delta x_i} $$ 则称函数 $f$ 在点 $(x_1,x_2,\cdots,x_n)$ 处可导,并将该极限值称为函数 $f$ 在点 $(x_1,x_2,\cdots,x_n)$ 处的偏导数,记作 $$ \frac{\partial f}{\partial x_i} $$ 多元函数的全微分 如果函数 $f(x_1,x_2,\cdots,x_n)$ 在点 $(x_1,x_2,\cdots,x_n)$ 处可导,则称函数 $f$ 在该点处可微分,且有 $$ df=\frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2+\cdots+\frac{\partial f}{\partial x_n}dx_n $$ 其中 $dx_i$ 表示 $x_i$ 的无穷小增量。 多元函数的链式法则 对于复合函数 $z=f(x,y),x=g(t),y=h(t)$,则有 $$ \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt} $$ 多元函数的隐函数求导 对于方程 $F(x,y)=0$,如果在点 $(x_0,y_0)$ 处有 $F(x_0,y_0)=0$,且 $\frac{\partial F}{\partial y}\neq 0$,则在点 $(x_0,y_0)$ 的某个邻域内,方程 $F(x,y)=0$ 可以唯一确定一个函数 $y=f(x)$,且有 $$ \frac{dy}{dx}=-\frac{\frac{\partial F/\partial x}{\partial F/\partial y}}{\frac{\partial F}{\partial y}} $$ 其中 $\frac{\partial F}{\partial x},\frac{\partial F}{\partial y}$ 分别表示 $F$ 对 $x,y$ 的偏导数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值