如何画出漂亮的决策树?

今天的内容介绍如何将决策树模型画出来。

进入实战部分!

首先安装所需的R包,并且载入: 

install.packages("rpart")
install.packages("rpart.plot")

library(rpart)
library(rpart.plot)

R包get!

下一步,使用mtcars数据集建立一个决策树模型,其中的mpg作为因变量,代码如下: 

tree <- rpart(mpg ~ hp + wt + am, data = mtcars)

将上述模型tree进行作图: 

rpart.plot(tree)

07346778ad71a97052c1ff926775af08.png

以右下角的方框内容为例,一个方框指代一个节点,其中的数字29指的是此决策树给出的预测值mpg=29,样本占总数的22%。

方框的颜色(这里为蓝色,可修改)与mpg的值成正比,即值越大,颜色越深。

可以通过代码改变决策树的展示风格,一共有6种风格可供选择,代码如下: 

par(mfrow = c(3, 2))
rpart.plot(tree, type = 0)
rpart.plot(tree, type = 1)
rpart.plot(tree, type = 2) #默认
rpart.plot(tree, type = 3)
rpart.plot(tree, type = 4)
rpart.plot(tree, type = 5)
par(mfrow = c(1, 1))

6962e71103ec2010138100a4ca6396eb.png

大家可以根据个人的喜好进行选择。

还可以添加一些额外的信息,比如每个节点的样本量,代码如下: 

rpart.plot(tree, extra = 101) # 添加样本量

9cf4534417ba1444f3dadf34a88947d6.png

也可以调整小数点保留的位数: 

rpart.plot(tree, digits = 5)

66f8db1e9433d689955ebb9f6f1ebe7c.png

最后,调节上述节点的颜色为橘红色,代码如下: 

rpart.plot(tree, box.palette = "Oranges")

51d9d8b9990f431bda8cadd53e84b8f9.png

关于其它更多修饰,可以询问R的帮助系统:?rpart.plot

好啦,今天的内容就到这里。如果有帮助,记得分享给需要的人84e8e6e6e3a2b0dfd01902c29871f762.png

参考文献

https://cran.r-project.org/web/packages/rpart.plot/

▌本文由R语言和统计首发

▌课程相关咨询可添加R师妹微信: kefu_rstats

▌编辑:June

▌邮箱:contact@rstats.cn

▌网站:www.rstats.cn

我们致力于让R语言和统计变得简单!

机器学习系列教程

从随机森林开始,一步步理解决策树、随机森林、ROC/AUC、数据集、交叉验证的概念和实践。

文字能说清的用文字、图片能展示的用、描述不清的用公式、公式还不清楚的写个简单代码,一步步理清各个环节和概念。

再到成熟代码应用、模型调参、模型比较、模型评估,学习整个机器学习需要用到的知识和技能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值