专家点评Nat Genet | 赵方庆团队建立高通量大视野空间转录组学新技术

点评 | 文路/汤富酬(北京大学)来源:BioArt

在生物医学研究的前沿,空间转录组学技术已成为揭示细胞组成、空间异质性以及细胞间复杂相互作用的关键工具,对于深入理解胚胎发育、神经科学以及疾病发生机制等领域至关重要。尽管如此,该技术在实际应用中仍受限于成本高昂、视野范围有限和数据处理通量不足等技术瓶颈,这些限制在构建三维及多时空全转录组图谱时尤为突出。

2024年9月10日,中国科学院动物研究所的赵方庆团队在Nature Genetics发表了题为Custom microfluidic chip design enables cost-effective three-dimensional spatiotemporal transcriptomics with a wide field of view的研究论文。该研究团队通过创新的网格化微流控芯片设计,结合碳二亚胺化学和新的空间编码技术,开发了一种高通量、大视野的空间转录组学新技术(MAGIC-seq)。这项技术不仅显著提高了检测通量和捕获面积,还大幅降低了成本和批次效应,为大规模三维组织研究和复杂转录过程的深入分析提供了新的研究途径。

4e1620caaa4ffc47f612a42a48c71dcb.png

在传统的基于测序的空间转录组技术中,为了确定基因表达的空间位置,研究者通常依赖于成本昂贵且操作复杂的解码过程,例如Stereo-seq、Slide-seq、Pixel-seq、Seq-scope等技术。其他方法者如10x Genomics的Visium平台,需要使用精密的液体工作站来精确定位。这些技术普遍遵循“One spot, One barcode”的原则,即每个捕获点需要一个独立的条形码,这导致在处理多个样品或扩大捕获范围时,所需的时间和成本会相应增加。

DBiT-seq和Decoder-seq等方法通过使用微流控产生的组合标签提高了编码效率,但它们在保持高分辨率的同时,难以实现对较大组织区域的覆盖,且通量相对较低。为了克服这些限制,MAGIC-seq技术采用了网格化微流控芯片设计,并对空间编码策略进行优化,通过多次交叉反应实现了“One combination, Multiple spots”的布局,这不仅保持了高灵敏度,而且显著提高了检测通量(8倍),并大幅降低了芯片制备成本(降至~$0.11/mm2)。此外,MAGIC-seq技术的高一致性修饰和提升的通量有助于减少不同样本间的批次效应,这对于处理大量样本(例如,构建基于连续切片的三维模型)并确保定量分析的准确性至关重要。这种技术的进步不仅提高了实验的灵活性,还为大规模组织研究提供了更广阔的探索空间,为深入理解复杂生物过程的分子机制奠定了重要的技术基础。

349627822f54d97e691f15c53c117d3e.jpeg

图1. MAGIC-seq能够对多种组织类型进行灵敏、高通量、一致的空间检测

在空间转录组学领域,实现视野的扩大与高分辨率的保持一直是关键的技术挑战。传统方法在追求更广阔的视野时,往往不得不牺牲图像的分辨率,这对于深入研究复杂的生物过程,尤其是动态变化的器官发育过程,构成了显著的障碍。为此,MAGIC-seq首次提出了“拼接芯片”的创新概念,通过调整微流控芯片的网格间距,并运用多轮编码技术,将多个捕获网格有效地拼接在一起,从而在不牺牲分辨率的前提下,显著扩展了视野。

在50 μm分辨率的条件下,MAGIC-seq技术仅用149种barcode就能将捕获面积扩展至21.6 mm×21.6 mm的范围。即便在接近单细胞分辨率的高标准下,MAGIC-seq也能够轻松实现约3.5 cm2的捕获区域,这一范围远远超出了绝大多数现有技术的检测能力。这种技术的扩展性不仅增强了实验设计的灵活性,而且为大规模组织研究提供了更广阔的探索空间。尤为重要的是,MAGIC-seq技术并不局限于特定的网格布局。研究人员可以根据样本的具体形状和数量,自主设计网格的布局,以优化检测通量或调整拼接芯片的形状,从而更有效地利用空间信息,满足不同实验需求。这种高度的可定制性,使得MAGIC-seq技术在空间转录组学研究中具有广泛的应用前景,为深入探索细胞和组织的复杂结构与功能提供了强有力的技术支持。

77370ae633ef71f78bce73df8dbb4dc9.jpeg

图2. 小鼠器官发生的时空转录组图谱

为了全面评估MAGIC-seq技术的可靠性和适用性,研究团队在一系列关键组织中进行了广泛测试,包括小鼠的大脑、小脑、心脏、肝脏、脾脏、肺和肾脏等。测试结果表明,MAGIC-seq在检测灵敏度、测序效率和数据一致性方面均展现出显著的优越性。随后,研究团队运用MAGIC-seq的拼接芯片技术,在高分辨率下对小鼠从胚胎期到出生后不同发育阶段的组织切片进行了精细描绘,成功捕捉到器官结构逐步形成的过程,还揭示了基因在不同发育阶段的空间表达变化,为识别影响小脑发育的关键基因和信号通路提供了重要线索。

此外,研究团队还对发育中的小鼠大脑进行了深入的系统性分析。通过结合数百张H&E染色切片和近百张基因表达样本,成功构建了一个高质量的三维空间转录组图谱。这一图谱不仅展示了小鼠大脑在发育过程中细胞和分子的空间分布,还揭示了组织在不同发育阶段的动态变化。这种多组织适用性、高通量、分辨率与广阔视野的结合,使其在广泛的生物学研究领域中具有巨大的应用潜力,并为深入理解复杂生物过程的分子机制提供了宝贵的数据和工具支持。

5ebf3e6a40dd5a8cd84a32be86ac208b.jpeg

图3. E18.5小鼠大脑的三维空间转录组图谱

综上,MAGIC-seq以其创新和灵活的设计,以及显著的技术优势,重塑了空间转录组学的技术框架。随着技术的进一步优化,MAGIC-seq有望成为推动空间转录组学研究和应用的重要工具,并在更广泛的研究领域中发挥重要作用。

中国科学院动物研究所博士后朱俊杰、博士研究生庞琨和博士后胡倍瑜为该研究的共同第一作者,中国科学院动物研究所赵方庆研究员为该研究的通讯作者。

专家点评

8818c820f0e35f5f86ddd66ab83fc262.png

文路,汤富酬(北京大学生物医学前沿创新中心)

空间转录组技术为深入理解包括胚胎、大脑、肿瘤等复杂生物组织中各种类型细胞的空间分布、组织模式、以及交互作用提供了强有力的研究工具。2016年,瑞典皇家理工学院Joakim Lundeberg团队首次报道了基于原位捕获的空间转录组技术(spatial transcriptomics),其利用芯片上有空间信息的探针,原位捕获组织切片中的mRNA,从而实现基因表达信息的空间定位。至今,技术不断发展,已报道10x Visium、HDST、Slide-seq(V2)、DBiT-seq、Stereo-seq、Decoder-seq等多种空间转录组技术。

基于芯片捕获的空间转录组技术,成本受限于芯片上的探针数量,其捕获精度越高,捕获的组织区域越大,成本就越高。2020年,耶鲁大学樊荣团队报道了DBiT-seq技术,利用两组垂直交叉的微流控通道进行标签组合,利用n+m个标签探针(例如:100+100=200个探针),即可编码n×m个捕获点(例如:100X100=10000个捕获点),从而大大提高编码效率。

在本研究中,中国科学院动物研究所赵方庆团队报道了MAGIC-seq,提出了一种新型的回折式微流控通道设计方案。这一方案简洁而巧妙,可理解为仍使用n+m个标签(例如:100+100=200个探针),但对于n和m各自增加了一个系数knkm,从而能够编码kn×km×n×m个捕获点(例如:100X100X3X3=90000个捕获点)。研究中展示了该设计如何通过两组微流控通道各进行2次回折(kn=3,km=3),将捕获面积增加9倍,从7mm×7mm增加至21.6 mm×21.6 mm。通过不同的回折形状,该方法可以灵活地设计不同的网格布局,包括同时检测多个样本的网格布局,以及检测单个大样本的“拼接芯片”(splicing-grid)。研究证实MAGIC-seq具有更高通量,更高捕获效率和更低批次效应,并对小鼠大脑、小脑、心脏、肝脏、脾脏、肺和肾脏等组织进行了大量测试,证实MAGIC-seq的技术效果。这一研究开发了一种高通量、大视野的空间转录组新技术,提高了检测通量和捕获面积,降低了成本和批次效应,为空间转录组学研究提供了新的有力工具。这是空间组学技术领域的又一重大突破,有望大幅度提高空间组学技术的通量,大幅度降低空间组学技术的成本,加速空间组学技术的临床转化与应用。

原文链接:

https://www.nature.com/articles/s41588-024-01906-4

制版人:十一. laiy

高颜值免费 SCI 在线绘图(点击图片直达)

8d3eea25da1c96056d149946794546d2.png

最全植物基因组数据库IMP (点击图片直达)

15381e4e185cae12af91948466619110.png

往期精品(点击图片直达文字对应教程)

bb30d72c8d6b5b71f5bdf023068cf01d.jpeg

17b0e954947eb5b758a3c1e98ce24d71.jpeg

85b22b0e0750f7e1fcbc9d4aea83f9c3.jpeg

69354e5f9732720310b4e5d289f6cf6a.jpeg

368e86920867d8ab2b38f8b5c69565ed.jpeg

a6f5a09b2926c6617e8057653ea7f118.jpeg

9dd62a66183c6462b150ec68036ef964.jpeg

4bb2c9f79853385d07e495986fe27068.jpeg

63b9f3780259c54506a1b5e5dc61bde9.jpeg

e1052da75f251f095b256e38cce0e68a.jpeg

57f21bd8d60611402bc1a70d4b5f7381.jpeg

0771d7a48836ce260faa91b5a804b3e1.jpeg

6a9d2e2fd6f998c48892375d9e32c5e0.png

ba7f802f0a6e52f8dde549865d6f66a3.png

623b4bc1412a704e612e1c0db66f4620.png

c6c01c9ebc76f526f93b87be9d372a92.png

e1571888f196cc0764b60f2aea341724.jpeg

cfcb248a78e0076785e33c5232956ad1.jpeg

bab927fe807a6b6c11714b3bd002e2ea.jpeg

9b2f06032806d892b5efe7b0802babe1.jpeg

c1c0fddc0cb872e7a966dc7161981f99.png

33037f92e7022a740171fe937dfacfb9.png

e7521a53c9523a99f5a5c8105fc5216d.jpeg

5a85de22d09f8ae299ef65ae84ca4bf1.png

f015708991c5ffbf1e2dbe602de00934.png

91b07d7229a8a41ea645a8488322ae12.jpeg

70c60f5a3b3d77c5398c2c5e1265729a.png

2219c0c603e4c132286fb090caf27b75.png

机器学习

3568284904573a456cf67aae304ed582.jpeg

424c327255c8efbe1fecd26bafb9e29c.jpeg

27d6dacafd927bbad58b33d4e7c2f712.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值