相量成像(Phasor Imaging)总结主要对下面论文的思路、重难点进行总结:
M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” ACM Transactions on Graphics (ToG), vol. 34, no. 5, p. 156, 2015.
包括:
总结3:调制频率对传输鲁棒性和测距深度之间的tradeoff
1. 文章动机
基于相干的ToF成像中Global illumination带来的多径干扰很难与直接光照分离。过去的研究通常有两种应对措施:
a. 假设忽略这一干扰,导致成像效果降低; 或
b. 利用高频来消除这一干扰,但这会导致深度检测范围降低(即成像深度降低)。
这篇文章就想希望解决这个问题,具体包括对提出全局光照鲁棒的C-ToF成像技术; 以及试图分离全局光照和直接光照。
2. 文章思路
基于相干的ToF成像中Global illumination带来的多径干扰很难与直接光照分离。论文将:
从而将光传输的分析简化到相量分析。
接着,文章分析了相量表示法相对于传统表示方法的优势,并且给出了不同光传输事件(如Propagation, Reflection, Superpostion)时的相量表示(如下图所示),构建了相量成像的理论基础。
(图片来源:M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” ACM Transactions on Graphics (ToG))
最后,论文得到了当频率高于一个依赖于场景的阈值后,全局照明带来的多径干扰会消失的结论;并基于该结论,利用高频信号进行ToF成像,并克服了高频信号带来的距离测量模糊问题(Result 1);
Result 2则是Result 1的副产物,它是一种分离回复结果中全局光照(多径干扰)的贡献和直接光照贡献的技术。
当然,文章最后给出了仿真和实验结果,并分析了局限性和未来的方向。
3. 文章结果
本文主要有如下两个结果:
1. Micro ToF imaging. 一种基于C-ToF的形状恢复技术 , 对全局光照带来的误差非常robust.
- 比起传统未考虑全局光照带来的多径干扰的成像算法,该技术因为考虑了全局光照而精度更高;
- 比起过去通过提高调制频率克服全局光照干扰的成像算法,该技术因为使用了双频相位解包裹(unwrapped)而突破了高频带来的最大深度距离(测距模糊)限制。
- 而且,只需要测量4组数据即可,计算也简单。
2. 一种分离直接和多径干扰光照的技术
分离准确,算法简单,并且只是技术1的副产物,相当于一组数据,两个结果。
结果如下:
(图片来源:M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” ACM Transactions on Graphics (ToG))
(图片来源:M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” ACM Transactions on Graphics (ToG))
Reference
本文是对
M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” ACM Transactions on Graphics (ToG), vol. 34, no. 5, p. 156, 2015.
对总结
故大量参考了上文内容。