面试题33 二叉搜索树的后序遍历序列 分治 递归 Python3

输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。

参考以下这颗二叉搜索树:

     5
    / \
   2   6
  / \
 1   3
示例 1:

输入: [1,6,3,2,5]
输出: false
示例 2:

输入: [1,3,2,6,5]
输出: true

二叉搜索树的定义如下:

左子树中所有节点的值 < 根节点的值;右子树中所有节点的值 >根节点的值;其左、右子树也分别为二叉搜索树。

百度百科:

二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。二叉搜索树作为一种经典的数据结构,它既有链表的快速插入与删除操作的特点,又有数组快速查找的优势;所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数据结构进行高效率的排序与检索操作。

 

思路

对一个给定的后续遍历序列,先划分出它的左右子树;

然后再分别判断左右子树是否为二叉搜索树;

如果所有子树都为二叉搜索树,则返回True;

若有任何一个子树不是二叉搜索树,则返回False。

即 分治+递归

 

代码

class Solution:
    def verifyPostorder(self, postorder: List[int]) -> bool:
        i = 0
        j = len(postorder) - 1
        if not postorder:
            return True
        
        return self.subVerify(postorder,i,j)

    def subVerify(self, postorder, i, j):
        if i >=j:
            return True
        p = i
        while postorder[p] < postorder[j]:
            p = p + 1
        m = p
        while postorder[p] > postorder[j]:
            p = p +1 

        return p == j and self.subVerify(postorder,i,m-1) and self.subVerify(postorder,m,j-1)

结果

 

复杂度分析

每次调用subVerify的复杂度为O(N),最多调用N次,因此时间复杂度O(N^2)

空间复杂度O(N)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页