本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 Module 1: Range Estimation 的学习笔记。
-
视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542
-
关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~
内容在CSDN和微信公众号同步更新
- Markdown源文件暂未开源
- 笔记难免存在问题,欢迎联系指正
当前更新列表:
- MIT 矩阵方法
- 《合成孔径雷达成像原理》
- TI mm wave Tutorial
1.1 Introduction to mmwave Sensing – Module 1: Range Estimation
-
FMCW Radars
-
F requency M odulated C ontinuous W aves
-
very popular in both automotive and industrial segments
-
basically measures the range , velocity and angle of arrival of objects
✅ 接下来介绍 each of these demensions of sensing:
🚩 range (module 1) ⇒ \Rightarrow ⇒ 🚩 velocity ⇒ \Rightarrow ⇒ 🚩 angle estimation(module 5)
-
-
Contents in this module :
- Basics of FMCW radar operation
- Using the radar to measure range of multiple objects in front of radar
- Concept of IF signal and IF Bandwidth
- Range Resolution
-
Aim: Try to answer the following questions
- 单目标测距 :How does the radar estimate the range of an object?
- 多目标测距 :What if there are multiple objects?
- 分辨力问题 :How close can two objects get and still be resolved as two objects?
- 最远探测距离 :What determines the furthest distance a radar can see?
What is a chirp?
- chirp
- a sinusoid whose frequency increases linearly with time
- 如下图 A-t plot (A: Amplitude)
- Start at frequency
f
c
f_c
fc ; End at frequency
f
c
+
B
f_{c+B}
fc+B
-
B : the bandwidth of the chirp
-
⇒ \Rightarrow ⇒ a chirp is a continuous wave of whose frequency is linearly modulated (FMCW)
-
its frequency-time (f-t) plot
-
S (slope of the chirp): the rate at which the chirp ramps up (e.g., sweeping a bandwidth of 4GHz within 40us ⇒ \Rightarrow ⇒ a Slope of 100MHz/us)
🚩 B and S are important parameters which define system performance
-
Now that we know what a chirp is
- next: how an FMCW radar works
A 1TX-1RX FMCW Radar
- A simplified block diagram of an FMCW radar
- with a single TX and a single RX
- The radar operates as follows:
- 1 A synthesizer (synth) generates a chirp
- 2 The chirp is transmitted by the TX antenna
- 3 The chirp is reflected off an object and the reflected chirp is received at the RX antenna
- 4 The RX signal and TX signal are ‘mixed’ and the resulting signal is called an “IF signal”
IF: intermediate frequency
- What is a Mixer ?
-
A mixer: a 3 port device with 2 inputs and 1 output
-
2 inputs : x 1 = s i n ( ω 1 + ϕ 1 ) x_1 = sin(\omega_1 + \phi_1) x1=sin(ω1+ϕ1) and x 2 = s i n ( ω 2 + ϕ 2 ) x_2 = sin(\omega_2 + \phi_2) x2=sin(ω2+ϕ2)
-
1 output : x 3 = x o u t = s i n [ ( ω 1 − ω 2 ) t + ( ϕ 1 − ϕ 2 ) ] x_3 = x_{out} = sin[(\omega_1 - \omega_2)t + (\phi_1 - \phi_2)] x3=xout=sin[(ω1−ω2)t+(ϕ1−ϕ2)] , with two properties:
🚩 Instantaneous Instantaneous 瞬时 frequency equal to the difference of the instantaneous frequencies of the two input sinusoids
🚩 Phase equal to the difference of the phase of the two input sinusoids
-
推导:积化和差公式
- 再利用IF filter 去掉 ( ω 1 + ω 2 ) (\omega_1 + \omega_2) (ω1+ω2), 只保留 ( ω 1 − ω 2 ) (\omega_1 - \omega_2) (ω1−ω2)
The IF signal
- The TX-signal and the RX-signal reflected from an object (上图)
- The RX is just a delayed version of TX signal
- τ \tau τ : the round-trip time between the radar and the object
- TX chirp 和 RX chirp 之间的frequency difference即为 IF (intermediate frequency )
- ⇒ \Rightarrow ⇒ A single object produces an IF signal – a sonstant frequency tone
- the frequency of IF: S τ = S × 2 d / c = S 2 d / c S\tau = S \times 2d/c = S2d/c Sτ=S×2d/c=S2d/c
结论: A single object in front of the radar produces an IF signal with a constant frequency of S 2 d / c S2d/c S2d/c
- Note 1 : The IF signal is valid from time
τ
\tau
τ (the time the reflected signal is received)
- ADC模数转换时需要注意开始时间
- End time: T c T_c Tc
- Note 2 :
τ
<
<
T
c
\tau << T_c
τ<<Tc
- τ \tau τ is typically a small fraction of the total chirp time
- 300米探测距离, T c = 40 u s T_c = 40us Tc=40us的 radar: τ / T c = 5 % \tau / T_c = 5\% τ/Tc=5%
Fourier Transforms: A quich review
-
Fourier transform :
- very important in FMCW radar!
- used in range, velocity, and angle estimation
-
Reivew:
- FT converts a signal from time domain ⇒ \Rightarrow ⇒ frequency domain
- A sinusoid in the time domain produces a single peak in the frequency domain
关于 频率混淆 ⇒ \Rightarrow ⇒ 决定 距离分辨率 :
- Within the observation window T below, 频率差仅 1 / ( 2 T ) 1/(2T) 1/(2T) ⇒ \Rightarrow ⇒ not sufficient to resolve the tones in the frequency spectrum
- Doubling the obeservation windows ⇒ \Rightarrow ⇒ 观察窗口内 results in a difference of 1 cycle
结论:Longer the observation period ⇒ \Rightarrow ⇒ better the resolution
- observation window T: 能够区分频率差大于 1 / T 1/T 1/T 的 frequency components
Multiple objects in front of the radar
- Multiple objects in front of the radar
- ⇒ \Rightarrow ⇒ multiple reflected chirps at the RX antenna
- f = S 2 d / c f = S2d/c f=S2d/c proportional to the range ⇒ \Rightarrow ⇒ 距离越远, τ \tau τ越大,IF频率越大
- A frequency spectrum of the IF signal will reveal multiple tones
- 且 频域 与 object frequency 成正比
Range Resolution in a radar
- Range resolution refers to the ability to resolve two closely spaced objects
- T window : ⇒ \Rightarrow ⇒ $> 1/T $ 的频率差
- In this slide, the two objects are too close that they show up as a single peak in the frequency spectrum
- 从A-T图中 也可以看出 the difference between frequencies is too small
⇒ \Rightarrow ⇒
- Solutions :
-
extend the observation window T ⇒ \Rightarrow ⇒ until Δ F > 1 / T \Delta_F > 1/T ΔF>1/T
✅ i.e., increase T c T_c Tc ⇒ \Rightarrow ⇒ 增加带宽 B = T c × S B=T_c \times S B=Tc×S
-
A clue: possibly a larger bandwidth B B B corresponds to a better range resolution
- 下面进行说明
Range Resolution in a radar
-
Recall that:
- IF frequency : f = S 2 d / c f = S2d/c f=S2d/c
- Two tones can be resolved in frequency: Δ f > 1 / T \Delta f > 1/T Δf>1/T
-
Next: derive an equation for the range resoltion of the radar
- 距离分辨率依赖于那些参数?Chirp Duration, Bandwidth, Slop?
-
Derive:
- Δ f = S 2 Δ d c > 1 T c \Delta f = \frac{S2\Delta d}{c} > \frac{1}{T_c} Δf=cS2Δd>Tc1 ⇒ \Rightarrow ⇒
- S 2 Δ d c > 1 T C \frac{\mathrm{S} 2 \Delta \mathrm{d}}{\mathrm{c}}>\frac{1}{\mathrm{~T}_{\mathrm{C}}} cS2Δd> TC1 ⇒ \Rightarrow ⇒ Δ d > c 2 S T C \Delta \mathrm{d}>\frac{\mathrm{c}}{2 \mathrm{ST}_{\mathrm{C}}} Δd>2STCc
- ⇒ \Rightarrow ⇒ Δ d > c 2 B \Delta d > \frac{c}{2B} Δd>2Bc
结论 : The range Resolution ( d r e s d_{res} dres) depends only on the Bandwidth swept by the chirp :
- d r e s = c 2 B d_{res} = \frac{c}{2B} dres=2Bc
- Question : Which of these two chirps gives a better range-resolution?
- What is the intuition behind this reuslt?
-
Ans :
- Same B ⇒ \Rightarrow ⇒ Same range-resolution
-
然而, intuitively , T c T_c Tc的大小也应该会造成一定的影响
- consider the properties of Fourier Transforms
- (long time ⇒ \Rightarrow ⇒ narrow frequency ⇒ \Rightarrow ⇒ Higher resolution
- How to resolve this contradiction ?
- 见下文
Digitizing the IF signal
- The bandwidth of interest of the IF signal depends on the desired maximum distance:
- f I F − max = S 2 d m a x c \mathrm{f}_{\mathrm{IF}_{-} \max }=\frac{\mathrm{S} 2 \mathrm{~d}_{\mathrm{max}}}{\mathrm{c}} fIF−max=cS2 dmax
- and then, determine the cut off frequency of the LPF
- IF signal --> LPF + ADC (digitized) --> further processing on a DSP
- 因此,ADC采样率(F_s)应该满足:
F
s
≥
S
2
d
m
a
x
c
F_s \geq \frac{S2d_{max}}{c}
Fs≥cS2dmax
- (We assume a complex baseband signal ⇒ \Rightarrow ⇒ half the Nyquist rate of a real signal)
结论 : An ADC sampling rate of F s F_s Fs limites the maximum range of the radar to d m a x = F s c 2 S d_{max} = \frac{F_s c}{2S} dmax=2SFsc
- 相同采样率时,S越小( T c T_c Tc越长),最大探测距离越大 (代价是 T c T_c Tc变长,相当于 以时间换空间 )
- Now, we can Revisit our ealier example
- Chirp A and B has the same bandwidth and range resolution
- 但是,For the same max detection range d m a x d_{max} dmax, A needs smaller sampling rate F s F_s Fs but more time
- So here is a trade-off
Summary
- The process:
-
totally, 5 steps
-
1 generate a chirp
-
2 transimit and receive the reflected chirp
-
3 IF signal and LPF
-
4 ADC
-
5 An FFT is performed on the ADC data
🚩 f I F = S 2 d c f_{IF} = \frac{S2d}{c} fIF=cS2d
🚩 因此,直接在时间信号上做FFT,得到频域
🚩 The location of peaks in 频域 ⇒ \Rightarrow ⇒ directly correspond to the range
🚩 This FFT is called a “range-FFT” ⇒ \Rightarrow ⇒ 因为it results objects in range
-
Key concepts / formulas
- f I F = S 2 d c f_{IF} = \frac{S2d}{c} fIF=cS2d
- d r e s = c 2 B d_{res} = \frac{c}{2B} dres=2Bc
- d m a x = F s c S d_{max} = \frac{F_s c}{S} dmax=SFsc
- 两个带宽 : Chirp Bandwidth VS IF bandwidth
- Large chirp bandwidth ⇒ \Rightarrow ⇒ better range resolution
- Large IF Bandwidth ⇒ \Rightarrow ⇒ faster chiprs, 更小的maximum distance
问题引出: velocity
- Two objects equidistant from the radar
- How will the range-FFT look like?
- Ans:
- 如果它们 速度 不同,那就可以separated out by further signal processing
- See in the next module