TI mmWave radar sensors Tutorial 笔记 | Module 1: Range Estimation

本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 Module 1: Range Estimation 的学习笔记。

  • 视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542

  • 关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~


内容在CSDN和微信公众号同步更新

在这里插入图片描述

  • Markdown源文件暂未开源
  • 笔记难免存在问题,欢迎联系指正

当前更新列表:

  • MIT 矩阵方法
  • 《合成孔径雷达成像原理》
  • TI mm wave Tutorial


1.1 Introduction to mmwave Sensing – Module 1: Range Estimation

  • FMCW Radars

    • F requency M odulated C ontinuous W aves

    • very popular in both automotive and industrial segments

    • basically measures the range , velocity and angle of arrival of objects

      ✅ 接下来介绍 each of these demensions of sensing:

      🚩 range (module 1) ⇒ \Rightarrow 🚩 velocity ⇒ \Rightarrow 🚩 angle estimation(module 5)

  • Contents in this module :

    • Basics of FMCW radar operation
    • Using the radar to measure range of multiple objects in front of radar
    • Concept of IF signal and IF Bandwidth
    • Range Resolution
  • Aim: Try to answer the following questions

    • 单目标测距 :How does the radar estimate the range of an object?
    • 多目标测距 :What if there are multiple objects?
    • 分辨力问题 :How close can two objects get and still be resolved as two objects?
    • 最远探测距离 :What determines the furthest distance a radar can see?

picture 1

picture 2

picture 3

picture 4

What is a chirp?

  • chirp
    • a sinusoid whose frequency increases linearly with time
    • 如下图 A-t plot (A: Amplitude)

picture 5

  • Start at frequency f c f_c fc ; End at frequency f c + B f_{c+B} fc+B
    • B : the bandwidth of the chirp

    • ⇒ \Rightarrow a chirp is a continuous wave of whose frequency is linearly modulated (FMCW)

    • its frequency-time (f-t) plot

    • S (slope of the chirp): the rate at which the chirp ramps up (e.g., sweeping a bandwidth of 4GHz within 40us ⇒ \Rightarrow a Slope of 100MHz/us)

      🚩 B and S are important parameters which define system performance

picture 6

Now that we know what a chirp is
  • next: how an FMCW radar works

A 1TX-1RX FMCW Radar

  • A simplified block diagram of an FMCW radar
    • with a single TX and a single RX

picture 7

  • The radar operates as follows:
    • 1 A synthesizer (synth) generates a chirp
    • 2 The chirp is transmitted by the TX antenna
    • 3 The chirp is reflected off an object and the reflected chirp is received at the RX antenna
    • 4 The RX signal and TX signal are ‘mixed’ and the resulting signal is called an “IF signal

IF: intermediate frequency

  • What is a Mixer ?
    • A mixer: a 3 port device with 2 inputs and 1 output

    • 2 inputs : x 1 = s i n ( ω 1 + ϕ 1 ) x_1 = sin(\omega_1 + \phi_1) x1=sin(ω1+ϕ1) and x 2 = s i n ( ω 2 + ϕ 2 ) x_2 = sin(\omega_2 + \phi_2) x2=sin(ω2+ϕ2)

    • 1 output : x 3 = x o u t = s i n [ ( ω 1 − ω 2 ) t + ( ϕ 1 − ϕ 2 ) ] x_3 = x_{out} = sin[(\omega_1 - \omega_2)t + (\phi_1 - \phi_2)] x3=xout=sin[(ω1ω2)t+(ϕ1ϕ2)] , with two properties:

      🚩 Instantaneous Instantaneous 瞬时 frequency equal to the difference of the instantaneous frequencies of the two input sinusoids

      🚩 Phase equal to the difference of the phase of the two input sinusoids

推导:积化和差公式
picture 8
picture 9

  • 再利用IF filter 去掉 ( ω 1 + ω 2 ) (\omega_1 + \omega_2) (ω1+ω2), 只保留 ( ω 1 − ω 2 ) (\omega_1 - \omega_2) (ω1ω2)

The IF signal

  • The TX-signal and the RX-signal reflected from an object (上图)
    • The RX is just a delayed version of TX signal
    • τ \tau τ : the round-trip time between the radar and the object
  • TX chirp 和 RX chirp 之间的frequency difference即为 IF (intermediate frequency )
    • ⇒ \Rightarrow A single object produces an IF signal – a sonstant frequency tone
    • the frequency of IF: S τ = S × 2 d / c = S 2 d / c S\tau = S \times 2d/c = S2d/c Sτ=S×2d/c=S2d/c

picture 10

结论: A single object in front of the radar produces an IF signal with a constant frequency of S 2 d / c S2d/c S2d/c

  • Note 1 : The IF signal is valid from time τ \tau τ (the time the reflected signal is received)
    • ADC模数转换时需要注意开始时间
    • End time: T c T_c Tc
  • Note 2 : τ < < T c \tau << T_c τ<<Tc
    • τ \tau τ is typically a small fraction of the total chirp time
    • 300米探测距离, T c = 40 u s T_c = 40us Tc=40us的 radar: τ / T c = 5 % \tau / T_c = 5\% τ/Tc=5%

Fourier Transforms: A quich review

  • Fourier transform :

    • very important in FMCW radar!
    • used in range, velocity, and angle estimation
  • Reivew:

    • FT converts a signal from time domain ⇒ \Rightarrow frequency domain
    • A sinusoid in the time domain produces a single peak in the frequency domain

关于 频率混淆 ⇒ \Rightarrow 决定 距离分辨率

  • Within the observation window T below, 频率差仅 1 / ( 2 T ) 1/(2T) 1/(2T) ⇒ \Rightarrow not sufficient to resolve the tones in the frequency spectrum

picture 11

  • Doubling the obeservation windows ⇒ \Rightarrow 观察窗口内 results in a difference of 1 cycle

picture 12

结论Longer the observation period ⇒ \Rightarrow better the resolution

  • observation window T: 能够区分频率差大于 1 / T 1/T 1/T 的 frequency components

Multiple objects in front of the radar

  • Multiple objects in front of the radar
    • ⇒ \Rightarrow multiple reflected chirps at the RX antenna
    • f = S 2 d / c f = S2d/c f=S2d/c proportional to the range ⇒ \Rightarrow 距离越远, τ \tau τ越大,IF频率越大

picture 13

  • A frequency spectrum of the IF signal will reveal multiple tones
    • 频域object frequency 成正比

picture 14

Range Resolution in a radar

  • Range resolution refers to the ability to resolve two closely spaced objects
    • T window : ⇒ \Rightarrow $> 1/T $ 的频率差
  • In this slide, the two objects are too close that they show up as a single peak in the frequency spectrum
    • 从A-T图中 也可以看出 the difference between frequencies is too small

picture 15

⇒ \Rightarrow

picture 16

  • Solutions :
    • extend the observation window T ⇒ \Rightarrow until Δ F > 1 / T \Delta_F > 1/T ΔF>1/T

      ✅ i.e., increase T c T_c Tc ⇒ \Rightarrow 增加带宽 B = T c × S B=T_c \times S B=Tc×S

picture 17

A clue: possibly a larger bandwidth B B B corresponds to a better range resolution

  • 下面进行说明

Range Resolution in a radar

  • Recall that:

    • IF frequency : f = S 2 d / c f = S2d/c f=S2d/c
    • Two tones can be resolved in frequency: Δ f > 1 / T \Delta f > 1/T Δf>1/T
  • Next: derive an equation for the range resoltion of the radar

    • 距离分辨率依赖于那些参数?Chirp Duration, Bandwidth, Slop?
  • Derive:

    • Δ f = S 2 Δ d c > 1 T c \Delta f = \frac{S2\Delta d}{c} > \frac{1}{T_c} Δf=cSd>Tc1 ⇒ \Rightarrow
    • S 2 Δ d c > 1   T C \frac{\mathrm{S} 2 \Delta \mathrm{d}}{\mathrm{c}}>\frac{1}{\mathrm{~T}_{\mathrm{C}}} cSd> TC1 ⇒ \Rightarrow Δ d > c 2 S T C \Delta \mathrm{d}>\frac{\mathrm{c}}{2 \mathrm{ST}_{\mathrm{C}}} Δd>2STCc
    • ⇒ \Rightarrow Δ d > c 2 B \Delta d > \frac{c}{2B} Δd>2Bc

结论 : The range Resolution ( d r e s d_{res} dres) depends only on the Bandwidth swept by the chirp :

  • d r e s = c 2 B d_{res} = \frac{c}{2B} dres=2Bc

  • Question : Which of these two chirps gives a better range-resolution?
    • What is the intuition behind this reuslt?

picture 18

  • Ans :

    • Same B ⇒ \Rightarrow Same range-resolution
  • 然而, intuitively T c T_c Tc的大小也应该会造成一定的影响

    • consider the properties of Fourier Transforms
    • (long time ⇒ \Rightarrow narrow frequency ⇒ \Rightarrow Higher resolution
    • How to resolve this contradiction ?
    • 见下文

Digitizing the IF signal

  • The bandwidth of interest of the IF signal depends on the desired maximum distance:
    • f I F − max ⁡ = S 2   d m a x c \mathrm{f}_{\mathrm{IF}_{-} \max }=\frac{\mathrm{S} 2 \mathrm{~d}_{\mathrm{max}}}{\mathrm{c}} fIFmax=cS2 dmax
    • and then, determine the cut off frequency of the LPF
  • IF signal --> LPF + ADC (digitized) --> further processing on a DSP
  • 因此,ADC采样率(F_s)应该满足: F s ≥ S 2 d m a x c F_s \geq \frac{S2d_{max}}{c} FscS2dmax
    • (We assume a complex baseband signal ⇒ \Rightarrow half the Nyquist rate of a real signal)

结论 : An ADC sampling rate of F s F_s Fs limites the maximum range of the radar to d m a x = F s c 2 S d_{max} = \frac{F_s c}{2S} dmax=2SFsc

  • 相同采样率时,S越小( T c T_c Tc越长),最大探测距离越大 (代价是 T c T_c Tc变长,相当于 以时间换空间 )

  • Now, we can Revisit our ealier example
    • Chirp A and B has the same bandwidth and range resolution
    • 但是,For the same max detection range d m a x d_{max} dmax, A needs smaller sampling rate F s F_s Fs but more time
    • So here is a trade-off

Summary

  • The process:
    • totally, 5 steps

    • 1 generate a chirp

    • 2 transimit and receive the reflected chirp

    • 3 IF signal and LPF

    • 4 ADC

    • 5 An FFT is performed on the ADC data

      🚩 f I F = S 2 d c f_{IF} = \frac{S2d}{c} fIF=cS2d

      🚩 因此,直接在时间信号上做FFT,得到频域

      🚩 The location of peaks in 频域 ⇒ \Rightarrow directly correspond to the range

      🚩 This FFT is called a “range-FFT” ⇒ \Rightarrow 因为it results objects in range

Key concepts / formulas

  • f I F = S 2 d c f_{IF} = \frac{S2d}{c} fIF=cS2d
  • d r e s = c 2 B d_{res} = \frac{c}{2B} dres=2Bc
  • d m a x = F s c S d_{max} = \frac{F_s c}{S} dmax=SFsc
  • 两个带宽 : Chirp Bandwidth VS IF bandwidth
    • Large chirp bandwidth ⇒ \Rightarrow better range resolution
    • Large IF Bandwidth ⇒ \Rightarrow faster chiprs, 更小的maximum distance

问题引出: velocity

  • Two objects equidistant from the radar
    • How will the range-FFT look like?

picture 19

  • Ans:
    • 如果它们 速度 不同,那就可以separated out by further signal processing
    • See in the next module
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值