MobiSys’23 | Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Train

Harmony是MobiSys'23提出的一种新型异构多模态联邦学习系统,通过解耦模型训练解决多模态数据的隐私保护和设备异构性问题。它包括模态化联邦学习和联邦融合学习两个阶段,旨在提高模型精度和降低训练时延。实验结果显示,Harmony相比于基准方法提升了20%以上的分类精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注1:本文系“无线感知论文速递”系列之一,致力于简洁清晰完整地介绍、解读无线感知领域最新的顶会/顶刊论文(包括但不限于Nature/Science及其子刊;MobiCom,Sigcom,MobiSys,NSDI,SenSys,Ubicomp;JSAC,雷达学报等)。
本次介绍的论文是: MobiSys’23, Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training

MobiSys’23 | Harmony : 通过解耦模型训练的异构多模态联邦学习

随着多模态传感系统在自动驾驶、健康监测等领域的广泛应用,如何在保护用户数据隐私的前提下,让不同用户的设备协同训练一个鲁棒的多模态模型,成为一个关键的研究课题。本文提出了一种新型的异构多模态联邦学习系统Harmony,其核心思想是将多模态模型训练解耦为两阶段:模态化联邦学习联邦融合学习

💡研究背景

多模态学习通过融合不同类型传感器的数据(图像、语音、雷达等),可以获得比单一模态更强大的模型。但是大多数多模态学习方法需要收集用户的数据到中央服务器,这给用户的隐私带来很大风险。

联邦学习(Federated Learning, FL)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值