http://www.cnblogs.com/dengdan890730/p/6145585.html
一阶导数与二阶导数的计算
图像I可以看作(x,y)∈N2→N的映射: i=f(x,y). 其中N为正整数.很明显f在定义域上是不连续的.
不连续函数f(x,y)的导数, 严格来说不算能算作导数, 只是形式上与真正的导数相似. 取Δx=1, 一阶与二阶偏导数分别为:
为简单起见, f(x,y)简写成 f(x), 因为求关于 x的偏导数时 y是恒定的.
作为Spatial Domain Filter的特点
- 一阶导数提取出来的边缘较粗,
- 二阶导数对细节更敏感, 如细线, 噪声等. 它提取出来的边缘更细更强(sharp)
- 二阶导数的符号可用来判断一个转变(transition)是从亮到暗或者相反.
应用二阶导数时容易出现double-line effect. (中间位置的二阶导数值与两边的往往不同). 出现双线效应的前提是线本身的宽度小于mask, 否则就不当作线, 而是region了.(见10.2.3)
注意, 上面的中间和两边的含义是: 只在一条水平线考察图片, x处理edge上为中间位置, x−1,x+1为两边位置.
Reference
- Digital Image Processing, 3rd edition, Chapter 10
关于导数总结如下:
(1)一阶导数通常图像中产生较粗的边缘
(2)二阶导数对精细细节,如细线、孤立点和噪声有较强的响应
(3)二阶导数在灰度斜坡和灰度台阶过度处会产生双边沿响应
(4)二阶导数的符号可以确定边缘的过渡是从亮到暗还是从暗到亮
(5)选导数提取边沿之前最好是做下图像的平滑,导数对噪声比较敏感