举几个例子。
例1
先说它在我本专业(通信工程)中的应用。
系统的误比特率(Bit Error Rate,BER)是指系统在工作过程中,出现错误比特的概率。
这个指标可以衡量一个通信系统的可靠性。BER越小,系统就越可靠。
对于AWGN信道下,一些简单调制方式(如线性无记忆的脉冲幅度调制PAM等)的系统,
可利用Gauss随机过程的概率密度函数理论计算出其BER。
如果是复杂点的调制方式,比如高阶QAM,虽然也可以理论计算,但我其实更倾向于数值仿真。
更具有实际意义的是,在现实生活中,如何测量一个通信系统的BER呢?
有人说,发很多很多个比特,统计错误的比特数,除以发送的总的比特数,就是BER。
我又要开始喷人了。BER是概率,你这么做是频率。频率不等于概率。
请先学好数学(数理统计、概率论)再发言。
上一次喷人,是发生在《通信系统仿真速成第6天:OFDM基带仿真(简单教学版)》里。
有人非要说OFDM的ifft之前的是频域信号。有人说fft以后,变到了频域,再fft,就不知道是个啥了。呵呵。
请先去学好数学(傅里叶变换、线性代数、函数……)
对于这道我自己出的题目,我不规范地写了以下步骤。
例2
正态分布的分位数可以用来评估投资或资产收益限额或者风险容忍度。
假设某基金经理人估计今年的收益率YR服从均值为16%,标准差为4%的正态分布,那么用类似的方法,可以求出YR的上95%分位数为9.4%。
这意味着,该基金经理有95%的把握说,至少取得9.4%的年收益率。
例3
以前有一篇文章,写了《 数量金融学(4):投资风险的测量和业绩评价》,里面讲了用Matlab计算风险价值Value at Risk。
我自己算了一下,原来Matlab的portvrisk函数是利用的参数法来计算的VaR。
假定收益率R服从一个均值和方差都已知的正态分布,计算其VaR,如“有99%的把握说,最多损失百分之几的本金”。
其实是在对随机变量R做单侧区间估计,置信度是99%。
区间和置信度基本上是一对矛盾体。要求区间估计测度越大,即估计得越不准确,那么置信度一般会偏大。
比如,我基本上有100%的把握说,你最多活不过1000岁……