遗传算法(2):对适应度函数的改进

本文探讨了在遗传算法中适应度函数的重要性及其调整方法,包括线性、动态线性、幂律、对数和指数标定等。通过这些变换可以有效改善选择过程,确保优秀个体得到更多的保留机会。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Review基本遗传算法

-----------------------------
关于适应度的问题
1. 有的时候,目标函数可能不一定可以直接作为适应度函数。
2. f(x1), f(x2), ... f(xN)之间的差别可能不是很大,个体被选出的概率差不多,这可能导致GA的选择功能被弱化。(为什么……)
此时:可以对目标函数进行变换(标定)。
有线性变换、动态线性变换、幂律变换、对数变换等。
对数,有一种“压大扩小”的功能……
轮盘赌,产生随机数,看落在哪个个体的身上。一定要随机。不是直接取测度最大的那个f(xi)。 为什么?





以下摘自百度文库
遗传算法中,关于适应度函数




(1) 线性标定



不是说不给最差的个体机会生存了,还是要给别人一点机会。

(2)动态标定 (就是把线性标定中ksi改成了ksi的k次方,希望开始的时候,大家都有机会,而越到后面,越要保留优秀的个体)





(3)幂律标定
(4)对数标定



(5)指数标定



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qcyfred

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值