题意:给一个有序的二叉树,已知有两个结点被swap了,让你恢复,要求空间复杂度为O1。
题解:中序遍历,应该是递增的,当冲突时记录父子的结点。如果不出意外,会有两次冲突,如果只有一次冲突,那就交换这个父子就好。如果有两次冲突,就交换第一次的父亲和第二次的儿子。
举例:
1234567->7234561,这时交换72组合的7 with 61组合的1
1234567->2134567,没找到第二组冲突,直接交换21
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None 52341
# self.right = None
class Solution(object):
curV=-9999999
change=[None,None,None,None]#第一组冲突的父子、第二组冲突的父子
def recoverTree(self, root):
"""
:type root: TreeNode
:rtype: void Do not return anything, modify root in-place instead.
"""
self.change=[None,None,None,None]#第一组冲突的父子、第二组冲突的父子
self.curV=-99999999
self.dfs(root)
if self.change[3]==None:
temp=self.change[0].val
self.change[0].val=self.change[1].val
self.change[1].val=temp
else:
temp=self.change[0].val
self.change[0].val=self.change[3].val
self.change[3].val=temp
def dfs(self,root):
if root==None:return
self.dfs(root.left)
if root.val<self.curV:
#print "fuck"
if self.change[1]==None:self.change[1]=root
else:self.change[3]=root
if self.change[1]==None:
self.change[0]=root
# print root.val
else:self.change[2]=root
self.curV=root.val
#print "curv",self.curV
self.dfs(root.right)