day24|回溯算法理论基础和组合问题

一.理论基础

代码随想录

回溯法处理的问题

  • 组合问题:N个数中找到k个数的集合
  • 切割问题:一个字符串按一定规则的几种切割方式
  • 子集问题:一个N个数的几个有多少种切割方式
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解独数

 每个回溯法都可以转化成一颗树来理解

回溯法模板

回溯三部曲

1.确定回溯函数的返回值和参数

一般都为void,看具体情况,函数一般为backtracking(),参数不是那么容易确定起来,所以需要什么参数,就写什么参数。

void backtracking(参数)

2.确定回溯函数的终止条件

什么时候到达终止条件就结束本层递归,一般终止条件需要到达叶子系欸但,但是可以提前判断结果就可以提前结束。

if (终止条件) {
    存放结果;
    return;
}

3.回溯搜索的遍历过程

回溯函数一般可以转化成一颗树,集合的大小(孩子的数量)一般就是树的宽度,递归的深度构成树的深度(N叉树)----一般做题脑海里想象二叉树

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果(回溯过程一般再递归函数的下面)
}

究极模板:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

到底要不要回溯?

比如组和总和问题:

sum不用回溯,因为它是局部变量,一般局部变量跟着回溯函数动态变化,一般是其参数,变化必须在回溯函数backtracking里面变化

但是path是全局变量,它是需要回溯的,不回溯就会一直加数据,全局一般设置在回溯函数外面,也考研是参数,但是它在backtracking外变化

所以判断要不要回溯:看它是不是全局变量


 题目链接:77. 组合

一.代码

class Solution {
public:
vector<vector<int>>result;
vector<int>path;
void backtracking(int n, int k, int startindex) {
    if (path.size() == k) {
        result.push_back(path);
        return;
    }
    
    for(int i = startindex; i < n; i++) {
        path.push_back(i + 1);
        backtracking(n, k, i + 1);
        path.pop_back();
    }
}
    vector<vector<int>> combine(int n, int k) {
     backtracking(n, k, 0);
     return result;   
    }
};

二.递归三部曲

1.确定返回值和参数

因为定义了全局变量result和path,所以返回类型为void,返回参数传进n,k还要传入而外的下标startindex,为了避免重复递归,因为这是组合问题

2.确定终止条件

看k,当结果集中达到了k,就结束循环返回上一层递归函数的下一层执行回溯,再到下一个加入到path种。

3.单层搜索的逻辑

for循环从第一个元素到第n个元素。每次加入path数组中,再循环下一层加入到path中,直到到达k,就return回溯删除path中的元素到下一层没遍历的元素(因为重复遍历的就不会再遍历了)。

关键:1.重复遍历的就不会再遍历了,2.需要定义一个startindex防止递归到重复元素。

三.剪枝

class Solution {
public:
vector<vector<int>>result;
vector<int>path;
void backtracking(int n, int k, int startindex) {
    if (path.size() == k) {
        result.push_back(path);
        return;
    }
    
    for(int i = startindex; i <= n -  (k - path.size()) + 1; i++) {
        path.push_back(i);
        backtracking(n, k, i + 1);
        path.pop_back();
    }
}
    vector<vector<int>> combine(int n, int k) {
     backtracking(n, k, 1);
     return result;   
    }
};

由上述可知,就改变了for循环的终止边界,因为当path数组中加入了剩下的元素依然不够k个元素就说明不符合规范,就可以提前结束循环了,而不需要遍历所有的分支。

n - (k - path.size()) + 1 怎么来的?

k - path.size():path.size为现在结果集中的元素,k - path.size为还需要加入多少元素才能符合一个正常的结果。

n - (k - path.size()) : 为去除需要的元素个数(从后面去除)的最后一个点

n - (k - path.size()) + 1: 为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。

所以优化之后的for循环是

这个剪枝就是去除没有意义的点,减少循环。

二刷经验:遍历每一层循环都要判断这层循环还可以加元素吗(保证后面加元素可以到k个),就是到了n - (k - path.size()) + 1 这个值吗,不能加就直接剪掉,可以加就遍历下一层循环判断。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值