正态分布3σ原则

本文详细介绍了正态分布,包括其概率特性、数学期望与平均数的区别、3σ原则。正态分布是一种重要的概率分布,特征是对称、钟形曲线,广泛应用于统计学和数据分析中。理解正态分布对于理解和利用样本均值来估计总体期望至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正态分布

也称高斯分布(Gaussian distribution)正态分布是一种概率分布。正态分布是具有两个参数μ(数学期望)和σ2(标准差)的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x 轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

数据期望

期望是个确定的数,是根据概率分布得到的。
数学期望,又称为均值,即"随机变量取值的平均值"之意,这个平均是指以概率为权的加权平均。
数学期望E(X)完全是由随机变量X的概率分布所确定。

平均数

平均数(mean),是做多次实验之后,总和的平均数。

数学期望与平均数不一样

正态分布3σ原则

数值分布在(μ—σ,μ+σ)中的概率为0.6526
数值分布在(μ—2σ,μ+2σ)中的概率为0.9544
数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
在这里插入图片描述
但是:样本量足够大的,可以用均值代替数学期望(其他实验中看到的)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值