poj 1177 Picture(线段树+矩形周长并)

题意:给出平面的n个矩形,求矩形合并后的周长。

思路:做完面积并以后做周长并思路已经很清晰了,都是差不多的原理。由于是要求边长,求周长要处理的问题不光是覆盖的长度,还有当前不相交的线段的个数,求这个东西多保存几个信息:当前区间不相交的线段的个数,当前左端点是否被覆盖,当前区间右端点是否被覆盖。这样求“竖线”的问题就可以解决。关于求“横线”的问题,不能直接将当前的线段长度加起来,因为当前线段中有可能是在前面的操作中添加的,因此记录一下上次线段长度,然后取两个长度差的绝对值,另外需要注意的一点是,两个矩形有可能有公共边,如果在公共边这里,这样先删掉,在添加,那么重复的边就被计算了两次,网上看到有几个代码是错误的。。。为了解决这个问题,在x相同是,可以先都把线段添加,然后再删除,也就是在排序时稍微改下就好了。


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#define inf 0x3f3f3f3f
#define Inf 0x3FFFFFFFFFFFFFFFLL
#define eps 1e-9
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int maxn=10000+10;
struct Node
{
    int x,L,R,c;
    Node(){}
    Node(int x,int L,int R,int c):x(x),L(L),R(R),c(c){}
    bool operator <(const Node &a) const
    {
        if(x==a.x) return c>a.c;
        return x<a.x;
    }
}node[maxn];
int sum[maxn<<2],cover[maxn<<2],lf[maxn<<2],rn[maxn<<2],cnt[maxn<<2];
int num[maxn];
map<int,int>mp;
inline void PushUp(int l,int r,int rt)
{
    if(cover[rt])
    {
        sum[rt]=num[r]-num[l-1];
        cnt[rt]=lf[rt]=rn[rt]=1;
    }
    else if(l==r)
        sum[rt]=cnt[rt]=lf[rt]=rn[rt]=0;
    else
    {
        sum[rt]=sum[rt<<1]+sum[rt<<1|1];
        cnt[rt]=cnt[rt<<1]+cnt[rt<<1|1];
        if(rn[rt<<1]&&lf[rt<<1|1]) cnt[rt]--;
        lf[rt]=lf[rt<<1];rn[rt]=rn[rt<<1|1];
    }
}
void build(int l,int r,int rt)
{
    sum[rt]=cnt[rt]=0;
    cover[rt]=lf[rt]=rn[rt]=0;
    if(l==r) return ;
    int m=(l+r)>>1;
    build(l,m,rt<<1);
    build(m+1,r,rt<<1|1);
}
void Update(int L,int R,int l,int r,int rt,int v)
{
    if(l>=L&&r<=R)
    {
        cover[rt]+=v;
        PushUp(l,r,rt);
        return ;
    }
    int m=(l+r)>>1;
    if(m>=L) Update(L,R,l,m,rt<<1,v);
    if(m<R) Update(L,R,m+1,r,rt<<1|1,v);
    PushUp(l,r,rt);
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n;
    while(~scanf("%d",&n))
    {
        int x1,y1,x2,y2;
        int tot=0,N;
        for(int i=0;i<n;++i)
        {
            scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            if(x1>x2) swap(x1,x2);
            if(y1>y2) swap(y1,y2);
            num[tot++]=y1;
            num[tot++]=y2;
            node[i]=Node(x1,y1,y2,1);
            node[i+n]=Node(x2,y1,y2,-1);
        }
        sort(num,num+tot);
        sort(node,node+tot);
        N=unique(num,num+tot)-num;
        mp.clear();
        for(int i=0;i<N;++i)
            mp[num[i]]=i+1;
        build(1,N,1);
        int ans=0,last=0,L,R;
        for(int i=0;i<tot;++i)
        {
            L=mp[node[i].L];
            R=mp[node[i].R]-1;
            Update(L,R,1,N,1,node[i].c);
            if(i<tot-1)
            {
                ans+=cnt[1]*(node[i+1].x-node[i].x)*2;
                ans+=abs(sum[1]-last);
                last=sum[1];
            }
            else ans+=abs(sum[1]-last);
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值