题意:求从A到B的最短路的条数(每条最短路不能有重复的边)。
思路:从s做最短路,然后从t做最短路,最后将满足dis1[u]+dis2[v]+w[u][v]的边加入到网络中,容量为1。最后做最大流即可。这里需要注意的是,题中给的是有向边,所以从t做最短路的时候要把原来的边删除,再添加一遍反向边,之前我做的时候直接添加的无向边,以为这样是没问题的,后来发现这是错的,真是傻了……
代码:
#include <iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#define inf 2139062143
#define Inf 0x3FFFFFFFFFFFFFFFLL
#define eps 1e-9
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int maxn=1000+10;
const int maxm=100000+10;
struct EDGE
{
int from,to,dist;
};
struct Edge
{
int from,to,cap,flow;
};
struct HeapNode
{
int d,u;
bool operator < (const HeapNode & a) const
{
return a.d<d;
}
};
struct Dijkstra
{
vector<EDGE>edges;
vector<int>G[maxn];
bool vis[maxn];
int n,m;
void AddEdges(int from,int to,int dist)
{
edges.push_back((EDGE){from,to,dist});
m=edges.size();
G[from].push_back(m-1);
}
void Init(int n)
{
this->n=n;
for(int i=0;i<=n;++i) G[i].clear();
edges.clear();
}
void dijkstra(int s,int *d)
{
priority_queue<HeapNode>q;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;++i) d[i]=inf;
d[s]=0;
q.push((HeapNode){0,s});
while(!q.empty())
{
HeapNode hp=q.top();q.pop();
int u=hp.u;
if(vis[u]) continue;
vis[u]=true;
for(int i=0;i<G[u].size();++i)
{
EDGE e=edges[G[u][i]];
if(d[e.to]>d[u]+e.dist)
{
d[e.to]=d[u]+e.dist;
q.push((HeapNode){d[e.to],e.to});
}
}
}
}
}slover;
struct Dinic
{
vector<Edge>edges;
vector<int>G[maxn];
int d[maxn],cur[maxn];
bool vis[maxn];
int n,m,s,t;
void clearAll(int n)
{
for(int i=0;i<=n;++i) G[i].clear();
edges.clear();
}
void AddEdges(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,0});
edges.push_back((Edge){to,from,0,0});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int>q;
d[s]=0;vis[s]=true;
q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if(x==t||a==0) return a;
int flow=0,f;
for(int & i=cur[x];i<G[x].size();++i)
{
Edge e=edges[G[x][i]];
if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.cap-e.flow))>0))
{
edges[G[x][i]].flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int MaxFlow(int s,int t)
{
this->s=s;this->t=t;
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow+=DFS(s,inf);
}
return flow;
}
}dinic;
int dis1[maxn],dis2[maxn];
EDGE ee[maxm];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
slover.Init(n);
dinic.clearAll(n);
int s,t,w=0;
int a,b,c;
for(int i=0;i<m;++i)
{
scanf("%d%d%d",&a,&b,&c);
if(a==b) continue;
ee[w++]=(EDGE){a,b,c};
slover.AddEdges(a,b,c);
}
scanf("%d%d",&s,&t);
slover.dijkstra(s,dis1);
slover.Init(n);
for(int i=0;i<w;++i) {slover.AddEdges(ee[i].to,ee[i].from,ee[i].dist);}
slover.dijkstra(t,dis2);
if(dis1[t]==inf)
{
printf("0\n");
continue;
}
for(int i=0;i<w;++i)
{
if(dis1[ee[i].from]+dis2[ee[i].to]+ee[i].dist==dis1[t])
dinic.AddEdges(ee[i].from,ee[i].to,1);
}
int ans=dinic.MaxFlow(s,t);
printf("%d\n",ans);
}
return 0;
}