需要全面学习LangChain?您看这篇就够了

欢迎各位开发者伙伴们探索 LangChain 0.2.12 的精彩世界!这份介绍手册是参考官网的整理过来的,希望对大家有所帮助,旨在帮助大家更深入地理解 LangChain 。通过本手册,您将能够快速掌握如何利用 LangChain 提供的各种工具和类库来构建智能应用程序。

LangChain 是一个框架,用于开发由大型语言模型(LLMs)驱动的应用程序。

LangChain 简化了 LLM 应用生命周期的每个阶段:

开发:使用 LangChain 的开源构建块和组件构建您的应用程序。使用第三方集成和模板快速启动。

产品化:使用 LangSmith 检查、监控和评估您的链,以便您可以持续优化并自信地部署。

部署:使用 LangServe 将任何链转换为 API。

具体来说,该框架由以下开源库组成:

langchain-core:基础抽象和 LangChain 表达式语言。

langchain-community:第三方集成。

•合作伙伴包(例如 langchain-openailangchain-anthropic 等):一些集成已被进一步拆分为只依赖于 langchain-core 的轻量级包。

langchain:链、代理和检索策略,构成了应用程序的认知架构。

langgraph:通过将步骤建模为图中的边和节点,构建健壮且有状态的多参与者应用程序。

langserve:将 LangChain 链作为 REST API 部署。

LangSmith:一个开发平台,让您可以调试、测试、评估和监控 LLM 应用程序。

注意:这些文档侧重于 Python LangChain 库。也可在官网查看 JavaScript LangChain 库的文档。

教程

如果您想构建特定的东西或更倾向于动手学习,请查看本公众号其他文章,这是开始的最佳地点。

以下是开始的最佳选择:

构建一个简单的 LLM 应用程序

构建一个聊天机器人

构建一个代理

LangServe | LangChain

本地运行大语言模型(LLMs)

构建基于SQL数据的问答系统 | LangChain

对话式检索增强生成(RAG)| LangChain

构建检索增强生成(RAG)应用 | LangChain

向量存储和检索器 | LangChain

构建查询分析系统 | LangChain

构建本地RAG应用程序 | LangChain

在图数据库上构建问答应用程序 | LangChain

langchain 0.2.3 API 参考手册

总结文本 | LangChain


 

概念指南

介绍 LangChain 所有关键部分的介绍,您需要知道!在这里,您将找到所有 LangChain 概念的高层解释。

API 参考

前往API参考部分,查看 LangChain Python 包中所有类和方法的完整文档。

参考

LangChain

DeepSeek 与 LangChain 的兼容性问题主要出现在某些特定的功能支持上。根据已知信息,DeepSeek 不支持 LangChain 中的 `bind_tools` 方法,这表明在使用 DeepSeek 模型时,无法通过 LangChain 框架直接调用或绑定工具[^1]。这种限制可能会影响那些依赖于工具绑定功能的开发者或用户,尤其是在构建复杂的 AI 应用程序时。 然而,这并不意味着 DeepSeek 完全不能与 LangChain 配合使用。LangChain 是一个灵活的框架,支持多种模型和工具的集成。对于 DeepSeek 模型,虽然不能使用 `bind_tools` 方法,但仍然可以通过其他方式实现与 LangChain 的集成。例如,开发者可以手动编写代码来调用所需的工具和服务,而不是依赖于框架提供的自动绑定功能。这种方式虽然需要更多的开发工作,但它提供了一种可行的解决方案,使得 DeepSeek 模型能参与到更广泛的 AI 应用程序中去。 此外,对于希望在本地环境中部署 DeepSeek 模型并与 LangChain 结合使用的开发者,可以考虑使用 Ollama 这样的工具来简化模型的部署过程。Ollama 提供了一个简单易用的接口,用于管理和运行各种大型语言模型,包括 DeepSeek。通过 Ollama,开发者可以更容易地将 DeepSeek 模型集成到他们的应用程序中,即使是在缺乏直接支持某些高级特性的框架(如 LangChain)的情况下[^2]。 ### 解决方案示例 如果遇到 DeepSeek 不支持 `bind_tools` 方法的问题,可以尝试以下替代方案: 1. **手动集成工具**:开发者可以直接编写代码来调用需要的功能,而不是依赖框架提供的自动绑定机制。例如: ```python # 假设有一个工具函数 def my_tool(input): # 工具逻辑 return processed_result # 在调用模型时手动处理工具调用 response = model.invoke("Some input") if response.requires_tool_call: result = my_tool(response.input) # 处理结果 ``` 2. **利用 Ollama 部署模型**:通过 Ollama 部署 DeepSeek 模型,简化模型调用过程,同时保持与 LangChain 的兼容性。 3. **社区和文档支持**:积极参与相关社区讨论,关注官方文档更新,以获取最新的技术支持和解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值