需要全面学习LangChain?您看这篇就够了

欢迎各位开发者伙伴们探索 LangChain 0.2.12 的精彩世界!这份介绍手册是参考官网的整理过来的,希望对大家有所帮助,旨在帮助大家更深入地理解 LangChain 。通过本手册,您将能够快速掌握如何利用 LangChain 提供的各种工具和类库来构建智能应用程序。

LangChain 是一个框架,用于开发由大型语言模型(LLMs)驱动的应用程序。

LangChain 简化了 LLM 应用生命周期的每个阶段:

开发:使用 LangChain 的开源构建块和组件构建您的应用程序。使用第三方集成和模板快速启动。

产品化:使用 LangSmith 检查、监控和评估您的链,以便您可以持续优化并自信地部署。

部署:使用 LangServe 将任何链转换为 API。

具体来说,该框架由以下开源库组成:

langchain-core:基础抽象和 LangChain 表达式语言。

langchain-community:第三方集成。

•合作伙伴包(例如 langchain-openailangchain-anthropic 等):一些集成已被进一步拆分为只依赖于 langchain-core 的轻量级包。

langchain:链、代理和检索策略,构成了应用程序的认知架构。

langgraph:通过将步骤建模为图中的边和节点,构建健壮且有状态的多参与者应用程序。

langserve:将 LangChain 链作为 REST API 部署。

LangSmith:一个开发平台,让您可以调试、测试、评估和监控 LLM 应用程序。

注意:这些文档侧重于 Python LangChain 库。也可在官网查看 JavaScript LangChain 库的文档。

教程

如果您想构建特定的东西或更倾向于动手学习,请查看本公众号其他文章,这是开始的最佳地点。

以下是开始的最佳选择:

构建一个简单的 LLM 应用程序

构建一个聊天机器人

构建一个代理

LangServe | LangChain

本地运行大语言模型(LLMs)

构建基于SQL数据的问答系统 | LangChain

对话式检索增强生成(RAG)| LangChain

构建检索增强生成(RAG)应用 | LangChain

向量存储和检索器 | LangChain

构建查询分析系统 | LangChain

构建本地RAG应用程序 | LangChain

在图数据库上构建问答应用程序 | LangChain

langchain 0.2.3 API 参考手册

总结文本 | LangChain


 

概念指南

介绍 LangChain 所有关键部分的介绍,您需要知道!在这里,您将找到所有 LangChain 概念的高层解释。

API 参考

前往API参考部分,查看 LangChain Python 包中所有类和方法的完整文档。

参考

LangChain

<think>好的,用户问的是如何在云端比如Cloud Studio搭建LangChain。首先,我需要理解用户的需求。LangChain是一个用于开发由语言模型驱动的应用程序的框架,通常在Python环境中使用。而Cloud Studio是腾讯云提供的云端IDE,支持多种编程环境和项目部署。用户可能想要在云端环境中快速搭建LangChain,可能是为了开发或测试相关应用,避免本地环境配置的麻烦。 接下来,我需要考虑用户的技术背景。可能用户对云计算和Python有一定了解,但可能不太清楚具体步骤。需要分步骤详细说明,确保用户能跟随操作。同时,用户可能关心如何在Cloud Studio中配置环境、安装依赖以及运行示例代码。 首先,应该指导用户如何创建Cloud Studio的工作空间。这包括选择Python模板,配置资源等。然后,需要安装LangChain及其依赖包,比如OpenAI的库。这里可能需要提醒用户获取并设置API密钥,因为LangChain通常需要与外部API如OpenAI交互。 另外,需要注意Cloud Studio的环境可能预装了Python,但可能需要检查Python版本,或者是否需要使用虚拟环境。不过,Cloud Studio的临时环境可能不需要虚拟环境,但用户若需要持久化环境,可能需要保存镜像或工作区。 还要考虑用户可能遇到的常见问题,例如依赖安装失败、环境变量设置不正确等。因此,在步骤中需要详细说明如何设置环境变量,以及如何验证安装是否成功。 最后,提供一个简单的示例代码,帮助用户测试搭建是否成功,并指导用户如何运行代码。同时,提醒用户注意事项,比如API密钥的安全、工作空间的保存等。 需要确保每一步都清晰,避免使用专业术语过多,或者提供必要的解释。例如,解释为什么需要环境变量,如何获取API密钥,以及如何保存工作空间以避免数据丢失。 可能还需要对比其他云端IDE,但用户明确提到Cloud Studio,所以专注于该平台即可。此外,考虑是否有其他依赖项或配置步骤,例如是否需要安装其他工具或服务,如数据库等,但根据LangChain的基本使用,可能不需要,除非用户有特定需求。 总结步骤应该是:创建工作空间→安装依赖→设置API密钥→编写测试代码→运行和验证。确保每个步骤都有明确的命令或操作指引,用户可以直接复制粘贴,减少出错可能。</think>以下是在腾讯云 Cloud Studio 搭建 LangChain 的详细步骤: --- ### 一、创建 Cloud Studio 工作空间 1. **登录控制台** 访问 [Cloud Studio 控制台](https://cloudstudio.net/) → 用微信扫码登录 2. **新建工作空间** - 点击「新建工作空间」 - 选择「Python 模板」(推荐 Python 3.8+) - 配置资源:建议选择 2核4G 及以上配置 - 点击「创建」 --- ### 二、安装 LangChain 依赖 1. **打开终端** 在 Cloud Studio 界面底部找到终端图标点击打开 2. **安装核心包** ```bash pip install langchain openai ``` (如需特定版本可加上`==版本号`) 3. **安装可选组件** ```bash pip install langchain-community python-dotenv # 社区集成包和环境变量管理 ``` --- ### 三、配置 API 密钥 1. **创建`.env`文件** 在项目根目录新建文件,输入: ```env OPENAI_API_KEY=你的OpenAI密钥 ``` 2. **加载环境变量** 在 Python 代码开头添加: ```python from dotenv import load_dotenv load_dotenv() ``` --- ### 四、验证环境(测试代码) 创建 `demo.py` 文件: ```python from langchain.llms import OpenAI from dotenv import load_dotenv load_dotenv() llm = OpenAI(temperature=0.9) print(llm("用一句话解释量子计算")) ``` 运行代码: ```bash python demo.py ``` --- ### 五、关键注意事项 1. **资源持久化** Cloud Studio 工作空间默认保存24小时,重要文件需通过: - 点击顶部菜单「文件」→「导出」下载项目 - 或绑定 GitHub/GitLab 仓库同步 2. **扩展能力** 可通过「插件市场」安装: - Jupyter Notebook 插件 - Docker 支持(如需容器化部署) 3. **国内网络优化** 如果访问 OpenAI API 不稳定: ```python llm = OpenAI( openai_api_base="你的代理地址", # 例如第三方转发服务 http_client=自定义客户端 # 可配置requests.Session ) ``` --- ### 六、进阶配置示例 部署带记忆的对话链: ```python from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory() conversation = ConversationChain( llm=OpenAI(), memory=memory ) print(conversation.run("你好,我是小明")) print(conversation.run("我刚才说自己叫什么名字?")) # 正确返回"小明" ``` --- 通过上述步骤,您可以在 5 分钟内完成云端 LangChain 开发环境的搭建。实际开发时建议结合 Cloud Studio 的「协同编辑」功能实现多人协作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值