机器学习和Google翻译算法

本文探讨了谷歌翻译如何利用深度学习、循环神经网络(RNN)、双向RNN和Sequence-to-Sequence模型来提高翻译准确性。谷歌翻译现采用单一系统支持多种语言之间的翻译,其评价标准包括BLEU分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:Machine Learning Translation and the Google Translate Algorithm
作者:Daniil Korbut
翻译:Vincent

译者注:很多人在做翻译工作的时候,可能会使用谷歌翻译,那作为开发人员,你对谷歌翻译使用了什么样的算法感兴趣吗?文是介绍了翻译系统是如何使用许多复杂的算法来生成精确的结果,以及学习如何评价机器学习翻译的复杂引擎。以下为译文。

多年前,翻译一种未知语言的内容是非常耗时的。之所以不能简单的根据词意就这么直白的翻译过来,原因有两个:

  1. 读者必须知道语法规则。

  2. 在翻译整句话时,读者还需要记住所有的语言版本。

现在我们不必再这么费劲了——我们可以通过谷歌翻译就把那些短语、句子甚至是更长的内容都可以翻译过来。但大多数人并不关心机器学习翻译的引擎是如何工作的。这篇文章是写给那些关心的人的。

深度学习翻译问题

如果谷歌翻译引擎想要保持翻译的准确性,即使是短句,也不会起作用,因为每个单词在不同的语境中有不同的意思。最好的办法是教会计算机知道语法规则,并教它根据这些规则来翻译句子。

事实真要是说起来这么简单就好了。

如果你曾经尝试过学习一门外语,你就会知道总是有很多例外的规则。当我们试图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值