Langchain使用介绍之 - 基于向量存储进行检索

本文详细阐述了使用Langchain将文本转换为向量,存储在Chroma等向量数据库中,以及利用这些向量进行问题检索的过程,涉及多种模型和技术如SentenceTransformer、OpenAIEmbeddings和RetrievalQAChain。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Text Embedding Models

  如何将一段Document转换成向量存储到向量数据库中,首先需要了解Langchain提供了哪些将文本转换成向量的model,langchian提供了很多将自然语言转换成向量的的模型,如下图所示,除了下图列举的model,更多支持的model可参考官网信息

   这里将以Langchain提供的SentenceTransformerEmbeddings和OpenAIEmbeddings为例子,通过实际代码来看看如何把一段自然语言转换成向量。SentenceTransformers 嵌入通过 HuggingFaceEmbeddings 集成进行调用,langchain还为那些更熟悉直接使用该包的用户添加了 SentenceTransformerEmbeddings 的别名,所以,本质上,SentenceTransformerEmbeddings和HuggingFaceEmbeddings是同一个内容,查看源代码也可以看到SentenceTransformerEmbeddings里面只是将HuggingFaceEmbeddings赋值给它而已,源代码如下图所示:

  所以,调用HuggingFaceEmbeddings和调用SentenceTransformerEmbeddings是一样的。下面的代码中调用HuggingFaceEmbeddings(),传入使用的model名称,这里使用的是"all-MinLM-L6-v2",通过调用embed_query(text)就能得到文本的向量数据。

import os
import openai
import numpy as np
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
from langchain.embeddings import OpenAIEmbeddings

embeddings = HuggingF
Langchain向量数据库是一种基于向量相似性搜索的数据库系统。它使用了最新的语义搜索技术,可以高效地存储检索大规模的向量数据。Langchain向量数据库的主要特点包括: 1. 高效存储Langchain向量数据库使用了紧凑的向量存储格式,可以有效地存储大规模的向量数据。它采用了一系列的压缩算法和索引结构,可以显著减少存储空间的占用。 2. 快速检索Langchain向量数据库支持高效的向量相似性搜索。它使用了基于树结构的索引方法,可以快速定位到与查询向量相似的数据项。同时,Langchain向量数据库还支持多种相似性度量方法,如欧氏距离、余弦相似度等。 3. 扩展性:Langchain向量数据库具有良好的扩展性。它支持分布式部署,可以在多台服务器上进行数据存储和计算。同时,Langchain向量数据库还提供了高效的数据迁移和负载均衡机制,可以方便地扩展系统的容量和性能。 4. 应用场景:Langchain向量数据库适用于各种需要进行向量相似性搜索的场景,如图像搜索、音频搜索、文本搜索等。它可以广泛应用于电子商务、智能推荐、人脸识别等领域。 测试点: - Langchain向量数据库的性能如何? - Langchain向量数据库支持哪些相似性度量方法? - Langchain向量数据库的存储格式是怎样的? - Langchain向量数据库的分布式部署如何实现? - Langchain向量数据库在哪些领域有应用案例? - Langchain向量数据库的优势和劣势是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

taoli-qiao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值