Langchain 提示模块 -初步介绍

Langchain是一个用于构建和操作提示的库,适用于语言模型。它提供了字符串和消息提示的标准接口,以及示例选择器和输出解析器,用于定制模型输入和处理输出。本文档介绍了PromptTemplates的使用,展示了如何通过它们生成传递给LLM或ChatModel的参数数据,以及一个应用案例。
摘要由CSDN通过智能技术生成

原文地址

prompts 简介

此部分包含与提示相关的所有内容。提示符是传递到语言模型中的值。此值可以是字符串(一般LLM模型接受字符串参数-如openai的text-davinci-003模型)或消息列表(一般chat模型接受消息列表参数-如openai的gpt-3.5-turbo模型)。

我们可以通过langchain在向模型传递参数时调用提示模板,来对数据进行构造,langchain在这方面提供的优势包括:

  • 字符串提示和消息提示的标准接口
  • 字符串提示模板和消息提示模板的标准(入门)接口
  • 示例选择器(Example Selectors):将示例插入到提示符中以使语言模型遵循的方法
  • 输出解析器(OutputParsers):用于将指令插入到提示符中作为语言模型输出信息的格式的方法,以及用于然后将该字符串输出解析成格式的方法。

我们有关于特定类型的字符串提示、特定类型的聊天提示、示例选择器和输出解析器的深入文档。

在这里,我们将介绍一个标准界面的快速入门,以便通过简单的提示开始使用。

PromptTemplates

PromptTemplates负责构建提示值。这些PromptTemplates可以执行格式化、示例选择等操作。PromptTemplates是一种对象,它提供了一个format_prompt方法,用于构建提示。在底层实现中,PromptTemplates可以实现各种功能,其灵活性非常高。这意味着我们可以根据需要进行任何操作,从而实现各种不同的提示方式。

from langchain.prompts import PromptTemplate, ChatPromptTemplate
string_prompt = PromptTemplate.from_template("告诉我一个关于{subject}的笑话")
chat_prompt = ChatPromptTemplate.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值