图像处理算法
文章平均质量分 76
图像基本算法,滤波、特征提取、边缘提取等
长大了的暗
这个作者很懒,什么都没留下…
展开
-
图像滤波器系列(2):保边平滑滤波器Edge-Preserving Noise Reduction
注意事项1、边缘位置可能移动2、假设噪声分布于图像数据无关3、最好不好用于高精度测量问题的预处理算子保边滤波都是非线性滤波,以halcon算子来进行介绍eliminate_min_max基本原理 :中心像素比邻域像素最大值还大的,则用一些规则(比如均值)替换;比邻域最小值还小的,替换,达到去噪;而保边的实现是因为:如果是边的话,邻域里至少还有一个像素也是比较大或比较小,与中心像素具有可比性,不会被替换和删除;sigma_image基本操作 :同样是首先确定一个邻域,但中心像素并不会用所有原创 2020-06-12 17:17:19 · 1325 阅读 · 1 评论 -
图像滤波器系列(1):冲击滤波器,shock_filter
解决的问题属于图像增强方法,主要增强边缘,减少图像边缘扩散,更便于边缘提取等操作。算法功能在图像边缘产生强的不连续性,在一个区段内(包含一个最大影响区和一个最小影响区的范围简称为区段)图像是分段常数用下图解释什么时最大最小影响区域:首先定义最大-最小影响区域:最大影响区域就二阶偏微分为负数的区域,最小影响区域二阶偏微分为正数的区域然后:一个区段即最大和最小影响区域组成的区段,shock_filter使此区域内是分段常数的,即下图实线:算法起源及思想第一个冲击滤波器shock原创 2020-05-22 14:39:35 · 5687 阅读 · 0 评论 -
Hough变换检测直线到广义霍夫变换
考虑在一个边缘图像中检测一个已知半径的圆,因为圆是旋转对称的,因此只需考虑平移情况。如果希望在边缘图像中尽可能迅速地找到圆的位置,对于比背景亮的圆,它的边缘梯度向量方向垂直圆边界并指向圆中心,如果圆比背景暗,梯度方向背离圆心。由于我们已知圆的半径,理论上我们可以从圆上单个点确定圆的中心。不幸的是,我们不知道哪个点在圆上。我们注意到圆上所有的像素都拥有同样的特性,这个特性就是基于梯度向量可以构建出圆的中心,这样我们就可原创 2017-10-31 21:05:25 · 5913 阅读 · 0 评论 -
基于Hu矩的区域相似性度量
Hu矩原理利用归一化二阶、三阶中心距派生出的7个不变矩,原理及计算公式见博文:Hu矩计算公式。注: Hu矩变化范围很大,且数字很小,牵涉到计算精度问题,直接处理不方便,可以用取绝对值之后用log函数转换。相似性度量指标如果是两个区域进行比较,Hu矩特征值为:H1 = [x1, x2, …, x7]; H2 = [y1, y2 ,…, y7];相似性度量1: value1=1−(∑71|xi−yi原创 2017-10-23 20:44:30 · 2733 阅读 · 0 评论