机器学习:VAE重参数技巧一个细节理解

关于 q ( z ) q(z) q(z) p ( ε ) p(\varepsilon) p(ε)

VAE中,用随机梯度变分推断进行参数 θ θ θ进行更新时,如果直接从 q ( z ) q(z) q(z)中采样z,算期望的梯度会导致"高方差问题",因此采用重参数化技巧,换种方式采样,即用随机变量 ε \varepsilon ε来代表随机性,服从一个标准正太分布,然后对这个随机变量进行变换。

其中的推导的一个关键步骤是:
E q ( z ) [ f ( z ) ] = E p ( ε ) [ f ( g ( ε ) ) ] E_{q(z)}[f(z)]=E_{p(\varepsilon)}[f(g(\varepsilon))] Eq(z)[f(z)]=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值