关于 q ( z ) q(z) q(z)和 p ( ε ) p(\varepsilon) p(ε)
VAE中,用随机梯度变分推断进行参数 θ θ θ进行更新时,如果直接从 q ( z ) q(z) q(z)中采样z,算期望的梯度会导致"高方差问题",因此采用重参数化技巧,换种方式采样,即用随机变量 ε \varepsilon ε来代表随机性,服从一个标准正太分布,然后对这个随机变量进行变换。
其中的推导的一个关键步骤是:
E q ( z ) [ f ( z ) ] = E p ( ε ) [ f ( g ( ε ) ) ] E_{q(z)}[f(z)]=E_{p(\varepsilon)}[f(g(\varepsilon))] Eq(z)[f(z)]=