Deep Learning(0-14草履虫)

深度学习解决的问题

自动提取出最合适的特征

在这里插入图片描述

深度学习应用




神经网络基础




损失函数




前向传播

反向传播

在这里插入图片描述

绿色字体为正向传播i输入,红色字体为反向传播梯度

MAX门单元只把梯度传给最大的

神经网络整体架构


激活函数

隐藏层激活函数

一般选择Relu,sigmoid会出现梯度消失现象

神经网络中防止过拟合


-

Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。
Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值