Machine Learning69-79(optimize & diagnostic & regularization)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1evaluate model

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2模型选择

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3Diagnosing bias and variance

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Regularization and bias/variance

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

建立表现基准

在这里插入图片描述

学习曲线

在这里插入图片描述
对于在训练集上高偏差的算法来说,增加训练数据的作用微乎其微
that is欠拟合的时候增加数据量并不是一个好办法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Bias/variance and neural networks

在这里插入图片描述
在这里插入图片描述

只要你适当地正则化,拥有一个更大的神经网络几乎没有坏处

只要你的训练数据不是很大,一个神经网络尤其是大的神经网络,通常是low bias problem machine

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值