检测PCB板电路的短路情况试错之路

博主作为图像处理新手,在实战项目中需识别实际图相对模板图的短路缺陷点。尝试直接图片减、模板匹配(结构相似度ssim、NCC归一化积相关度)、形状匹配等方法均失败,后续准备尝试图像配准+匹配、边缘梯度变化+信息熵等方向,还意识到opencv效率不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  作为一个刚开始进行图像处理的菜鸟,在第一次进行实战项目开发的出发点就挫折不断,赶紧记录一下这美好的时刻~

接到任务,识别相对于模板图中发生短路的实际图中缺陷点。

                                            

一听到有模板图,马上傻傻的认为直接图片像素计算来做,或者用模板匹配来做应该没什么问题。

开始第一次,直接图片减,发现原图本身与模板图就有很多差异,检测出来全是缺陷~

第二下,开始使用模板匹配,首先利用结构相似度ssim来算,参考:

https://www.pyimagesearch.com/2017/06/19/image-difference-with-opencv-and-python/#comment-429138

https://blog.csdn.net/hyk_1996/article/details/87867285   

https://blog.csdn.net/sinat_36438332/article/details/88173349

https://cloud.tencent.com/developer/section/1414961

不行

再用NCC归一化积相关度来计算,参考:

https://blog.csdn.net/cui134/article/details/23924303

https://www.cnblogs.com/yysky/p/10497858.html

https://www.cnblogs.com/x1mercy/p/7865336.html

https://cloud.tencent.com/developer/article/1357066

还考虑了一下形状匹配:https://blog.csdn.net/sillykog/article/details/83116793

最后觉得都不行,毕竟匹配几乎用于定位,确定ROI区域,经过思考,准备明天换个方向:

  1. 图像配准+匹配
  2. 边缘梯度变化+信息熵(判断无序的程度,减少漏判)
  3. 图像配准+匹配+梯度变化

~短短一天收获很多,包括对于opencv的一些操作,对于图像的基础知识,以及编译VS和python的熟练,同时意识到opencv真的效率不够工业级别,准备学习一下holcan。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值