高斯基函数线性组合回归练习——sklearn库高斯过程回归

这篇博客是关于使用Python的sklearn库进行高斯基函数线性回归的练习,通过GaussianProcessRegressor实现回归,并展示了如何绘制3D图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本题纯粹用作练习,无任何其他意义。

采用高斯基函数作为线性回归模型,用sklearn.gaussian_process.GaussianProcessRegressor可以进行回归,顺便学习画3D图。

代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
from mpl_toolkits.mplot3d import Axes3D

test = np.array([[2004,98.31]])
data = np.array([
    [2001,100.83,410],[2005,90.9,500],[2007,130.03,550],[2004,78.88,410],[2006,74.22,460],
    [2005,90.4,497],[1983,64.59,370],[2000,164.06,610],[2003,147.5,560],[2003,58.51,408],
    [1999,95.11,565],[2000,85.57,430],[1995,66.44,378],[2003,94.27,498],[2007,125.1,760],
    [2006,111.2,730],[2008,88.99,430],[2005,92.13,506],[2008,101.35,405],[2000,158.9,615]])
kernel = C(0.1, (0.001,0.1))*RBF(0.5,(1e-4,10))
reg = GaussianProcessRegressor(kernel=
### 如何在 DeepSeek 和 Dify 工作流应用中实现数据信息的查询与展示 #### 创建知识并集成数据连接 为了使应用程序能够查询和展示数据中的信息,首先需要创建一个包含适当结构的知识。这涉及到定义数据模型以及如何从外部源获取这些数据。 对于特定于数据的操作,可以利用 Dify 的自定义插件机制或内置的数据源支持来建立与所需数据类型的连接[^2]。一旦建立了这种连接,则可以通过 SQL 查询或其他适配器接口提取必要的记录集,并将其纳入到工作流程当中用于后续处理。 #### 编写 Agent 来执行复杂的业务逻辑 接着是编写 Agents (智能体),它们负责自动化地完成一系列指定的任务序列。针对本案例而言,应该设计这样一个 agent: - 接收来自前端界面或者其他触发条件下的请求; - 解析输入参数以确定要检索的具体表单字段及其过滤条件; - 调用预先设定好的存储过程或者直接构造动态SQL语句来进行实际的数据读取动作; - 将获得的结果整理成易于理解的形式返回给调用方; ```python def query_database(agent_input): db_connection = establish_db_connection() # 建立数据连接 sql_query = "SELECT * FROM table_name WHERE column LIKE '%{}%'".format(agent_input['search_term']) result_set = execute_sql(db_connection, sql_query) formatted_results = format_data(result_set) return {"data": formatted_results} ``` 上述代码片段展示了简化版的agent函数`query_database()`的工作方式[^3]。请注意,在真实环境中应当采取更加严谨的安全措施防止SQL注入攻击等问题的发生。 #### 构建用户交互界面及API端点 最后一步是要搭建友好的用户体验层——即允许最终用户提交查询指令并通过直观的方式查看输出结果。这部分通常会涉及HTML/CSS/JavaScript等前端技术栈的选择,同时也可能依赖RESTful风格的服务架构向客户端暴露可编程接口以便灵活对接各种第三方系统。 当一切准备就绪后,记得按照官方文档指示保存所做的更改并正式上线发布新特性[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值